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[1] Imaging spectroscopy is a tool that can be used to spectrally identify and spatially
map materials based on their specific chemical bonds. Spectroscopic analysis requires
significantly more sophistication than has been employed in conventional broadband
remote sensing analysis. We describe a new system that is effective at material
identification and mapping: a set of algorithms within an expert system decision-making
framework that we call Tetracorder. The expertise in the system has been derived from
scientific knowledge of spectral identification. The expert system rules are implemented in
a decision tree where multiple algorithms are applied to spectral analysis, additional expert
rules and algorithms can be applied based on initial results, and more decisions are made
until spectral analysis is complete. Because certain spectral features are indicative of
specific chemical bonds in materials, the system can accurately identify and map those
materials. In this paper we describe the framework of the decision making process used for
spectral identification, describe specific spectral feature analysis algorithms, and give
examples of what analyses and types of maps are possible with imaging spectroscopy data.
We also present the expert system rules that describe which diagnostic spectral features are
used in the decision making process for a set of spectra of minerals and other common
materials. We demonstrate the applications of Tetracorder to identify and map surface
minerals, to detect sources of acid rock drainage, and to map vegetation species, ice,
melting snow, water, and water pollution, all with one set of expert system rules. Mineral
mapping can aid in geologic mapping and fault detection and can provide a better
understanding of weathering, mineralization, hydrothermal alteration, and other geologic
processes. Environmental site assessment, such as mapping source areas of acid mine
drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and
years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to
study both terrestrial and planetary science problems. Imaging spectroscopy can be used to
probe planetary systems, including their atmospheres, oceans, and land surfaces.
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1. Introduction

[2] Spectroscopy is a tool that has been used for decades
to identify, understand, and quantify solid, liquid, or gas-
eous materials, especially in the laboratory. In disciplines
ranging from astronomy to chemistry, spectroscopic mea-
surements are used to detect absorption features due to
specific chemical bonds, and detailed analyses are used to

determine the abundance and physical state of the detected
absorbing species. Spectroscopic measurements have a long
history in the study of the Earth and planets [e.g., Hunt,
1977; Clark et al., 1990a; Pieters and Englert, 1993; Clark,
1999]. Up to the 1990s, remote spectroscopic measurements
of Earth and planets have been dominated by multispectral
imaging experiments that collect high quality images in a
few, usually broad, spectral bands. However, a new gener-
ation of sensors is now available that combines imaging
with spectroscopy to create the new discipline of imaging
spectroscopy [e.g., see Goetz et al., 1985; Rencz, 1999 and
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references therein]. (Imaging spectroscopy has many names
in the remote sensing community, including imaging spec-
trometry, hyperspectral, and ultraspectral imaging. Ball
[1995] argues that spectrometry be limited to measurement
not including photons, as in mass spectrometry, leading
Clark [1999] to argue for ‘‘imaging spectroscopy’’ as the
appropriate term.) Imaging spectrometers acquire data with
enough spectral range, resolution, and sampling at every
pixel in a raster image so that individual absorption features
can be identified and spatially mapped [Goetz et al., 1985].
[3] Some traditional approaches to remote sensing anal-

ysis born in the era of multispectral imaging are based on
statistical methods exploiting the large number of samples
(pixels) in the remotely sensed data. The demonstrated
power of these approaches is vastly multiplied by the large
increase in information content inherent when the number
of spectral bands increases from the order of 10 to the order
of 100. Such scene statistical results are by their nature
scene-dependent, cannot be applied globally, and the statis-
tical approaches do not exploit the information inherent in
each individual spectrum concerning the chemical and
nature of the remotely sensed surface. Analysis tools from
another discipline, signal processing, have had good success
at detection of specific spectral signatures across data sets
using vector filter approaches. However, this approach
requires that the signature be stable from lab to field. Most
geologic and many biologic materials do not meet this
criterion.
[4] Our team emerged from a spectroscopic discipline,

which focuses on the information inherent in each spectrum.
Over the past decade we have developed a software system
that takes an explicitly spectroscopic approach to ‘‘hyper-
spectral’’ analysis. That is, the objective driving our system is
to determine the chemical, mineralogical, or biological nature
of each spectrum as an individual, independent of the rest of
the hundreds to millions of companion spectra in the data set.
The analysis must also be done with such efficiency that this
automated analysis can be performed on very large data sets
in short periods of time. A central task we have focused on is
robust detection of geologic and biologic materials from
visible and near-infrared (IR) spectroscopic measurements.
Our software system includes many other capabilities and is
being continually expanded, but our material identification
concept is our unique contribution and is the subject of this
paper.
[5] The spectral analysis system described here is called

Tetracorder, paying homage to the ‘‘Tricorder’’# remote
analyzer of the Paramount Pictures Star Trek series. This
paper will describe the Tetracorder material detection con-
cept and we will throughout use the term ‘‘Tetracorder’’
synonymously with the detection system. However, it
should be understood that the Tetracorder software system
encompasses more than spectral detection: Tetracorder is a
generalized application system where multiple algorithms
and analyses can be commanded through an expert system
rule set and decisions about the analyses performed to steer
analyses in certain directions. All these capabilities are
beyond the scope of this paper; therefore we will focus on
material identification and mapping.
[6] This paper will describe the concepts behind our

Tetracorder material detection scheme with illustrative
examples, then delve into aspects of the implementation

of Tetracorder. We will then discuss verification of Tetra-
corder performance, which is accomplished with a combi-
nation of human verification of Tetracorder spectral
analyses, field checking Tetracorder maps in situ, and
through laboratory analysis of collected samples. We will
present examples of Tetracorder analyses of terrestrial data
sets, and close with implications for planetary science.
[7] Tetracorder: a software program containing multiple

algorithms which can be commanded as an expert system.
This paper describes the software and expert system rule set
for Tetracorder version 3.5. When we refer to ‘‘Tetracorder’’
in the text, we mean the Tetracorder software and the expert
system driving the analysis.
[8] Expert System: In this paper, for spectroscopic anal-

ysis and identification of materials, an expert system is a set
of rules used to instruct algorithms to analyze spectral data
to attain a certain result, such as the identification of
minerals in a spectrum, including the influences of mix-
tures. The expert system rules presented here are the
collective result of a team of spectroscopists, physicists,
geologists, and botanists who analyzed spectra and imaging
spectroscopy data sets at multiple sites and geologic envi-
ronments for over a decade.

2. Tetracorder Materials Detection Concept

2.1. Overview

[9] At its highest level, Tetracorder identifies materials by
comparing a remotely sensed observed spectrum (the
unknown) to a large library of spectra of well-characterized
materials, but we do so using several innovations to
maximize accuracy and performance. The first of our
innovations is that in the comparison of a specific reference
to the unknown, only the portions of the spectrum that are
known to be diagnostic of the reference material are used.
Every spectral feature is due to an interaction of photons of
particular energies with the atoms and electrons within the
chemical under study, and the nature of the absorption is
largely unique to the specific chemical structure. At other
wavelengths, photon interactions do not give rise to absorp-
tion; mostly transmission or scattering occurs. Taken
together, the presence of spectrally ‘‘active’’ and ‘‘inactive’’
spectral regions for a material gives rise to the central concept
of a ‘‘diagnostic absorption feature.’’ Diagnostic absorption
features are unique to particular materials in shape (variation
in intensity with wavelength over a narrow interval) and
usually are concentrated in limited ranges of wavelength by
type of absorption. Between diagnostic features are portions
of the spectrum which contain little information specific to
the material of interest. The focus on diagnostic features in
analysis of natural scenes is critical because mixtures which
obey nonlinear systematics (e.g., coatings, intimate mixtures,
solutions) are common in the natural environment and
frustrate simple matching of spectra.
[10] In Tetracorder, each comparison of an unknown to a

reference spectrum is highly tailored to the chemistry of the
reference material by focusing on diagnostic spectral fea-
tures (Figures 1a and 1b). The tailoring is based on specific
expert knowledge of our team of spectroscopists, geologists,
and biologists. By neglecting portions of the spectrum that
are irrelevant to the chemistry of the reference material, we
reduce noise or clutter induced by these ‘‘inactive’’ wave-
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lengths. A corollary of this innovation is that Tetracorder
can, and routinely does, detect the presence of the influence
of many materials in a spectrum. For example, the key
spectral features of iron oxides are in the visible, while clay
minerals exhibit diagnostic features between 2 and
2.5 microns. The presence of multiple materials may dilute
the strength of their spectral features relative to those in a
reference spectrum, but in many important and frequent
cases the signatures do not confound each other.
[11] We learned early in our work that the degree of the

similarity between reference and unknown (as quantified
via a least squares shape-matching algorithm) was far from
sufficient to allow robust detection. Above we cited the
case where different materials have diagnostic spectral
features that are well-separated in wavelength, but our large
reference library contains many classes of materials that are
chemically and spectrally similar and even spectrally sim-
ilar but chemically different (e.g., carbonates, organic
compounds, and some OH-bearing minerals have similar
2.3-mm absorptions). Though not identical, they are similar
enough that noise and natural variations in field spectra
make the assignment of the proper threshold at which to
define identification or misidentification problematic. If we
used the properties of only a single material in our identi-
fication, we found that for a very large number of materials
there was no threshold setting to our least-squares fitting
process which simultaneously provided a high probability

of identification (low occurrence of missed identifications)
with a simultaneously low probability of false alarm or
misidentification owing to spectrally similar reference
materials in the library. In other words, if we set the
identification limit based on our goodness of fit criteria to
ensure rejection of false identifications, we also failed to
identify many locations where our material of interest was
present. Further, the threshold levels seem to be different
for different materials and what they are confused with.
Conversely, if we set the limits to ensure identification, we
admitted too many false alarms. In practice then, we find
that in many important cases of comparison of a single
material to a set of spectra, even when combined with
proper attention to diagnostic features to reduce noise, there
is no satisfactory way to map occurrence of materials in
those cases with confidence.
[12] Our solution to this problem, and our second innova-

tion, is to quantitatively compare the similarity of an
unknown spectrum to all entries in the library with similar
diagnostic features. Over the set of library entries that
constitute candidate detections, various similarity parameters
are compared, and identification is assigned to the reference
material with the greatest similarity to the unknown. Thus
Tetracorder not only compares the unknown’s spectral
properties to the spectral properties of each entry in the
library, but the comparisons themselves are quantitatively
compared, assessed, and judged to identify the components
present.
[13] We discovered important but surprising false identi-

fications remained even after the above processes were
followed. In these cases very different materials share
diagnostic spectral regions and coincidentally have very
similar shapes over these regions. Our shape-matching

Figure 1a. Continuum removal process employed by the
Tetracorder spectral feature shape matching algorithm.
Three reference spectra are shown: goethite, jarosite, and
hematite. Each spectral feature has its own continuum end-
points (illustrated by the boxes). The continuum is removed
from both the observed and reference spectra. For example,
the hematite 0.9-mm feature continuum is removed from the
Cuprite unknown spectrum, then the goethite continuum is
removed, and so on. This allows a specific comparison
between each spectral library feature and the unknown. The
spectra are offset for clarity.

Figure 1b. Spectral features as in Figure 1a except for
comparison with vibrational absorptions near 2.2 mm. Note
that alunite also has a diagnostic absorption near 1.5 mm.
The spectra are offset for clarity.
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algorithm operates on data which has had the reflectance
level and local slope removed and band depth normalized
over a diagnostic spectral region and the coincidental
similarities, which can result in identification ambiguities,
almost always arise after this normalization. While the
disparate materials in question may be similar in our
primary diagnostic region as perceived by our normalization
process, they never are similar at all other key wavelengths
or in terms of the local spectral parameters which have been
normalized (reflectance, local slope, and depth). Our third
innovation is to mitigate these coincidental ambiguities
using ancillary spectral information. We also use this same
approach to resolve ambiguities involving related minerals
that have similar diagnostic features but also differ in
straightforward and consistent ways at other wavelengths.
This approach complements and supersedes the compari-
sons of goodness of fit approach where possible.
[14] Our fourth innovation is to partition analyses across

the spectrum. As different photon absorption processes
tend to operate in different wavelength ranges, we split
the spectral identification into several spectral regions we
call groups. This allows multiple components to be
identified without the need for mixture analysis. For
example, Figure 1a shows diagnostic absorptions due to
electronic processes near 1 mm, while Figure 1b shows
vibrational absorptions in the 1.5 to 2.5-mm region. It is
clear that the AVIRIS spectrum in Figures 1a and 1b
displays absorptions due to both electronic and vibrational
processes.
[15] Our fifth innovation is to allow Tetracorder to return

a ‘‘no answer,’’ that is, a nondetection. It is a frequent
occurrence that a remotely sensed spectrum does not pass
even the liberal thresholds necessary to assign any candidate
detections. In other cases the constraints applied to resolve
ambiguities results in a rejection of an unknown in every
case. Tetracorder explicitly flags a spectrum as a ‘‘no
answer’’ that has no similarities to entries in the library as
defined in the expert system.
[16] In summary, Tetracorder identifies materials by com-

paring them to a large spectral library. Our recognition that
material spectral signatures are significant only in their
diagnostic wavelengths allows detection of more than one
material in a remotely sensed spectrum for common and
important combinations of materials. Tetracorder mitigates
false alarms caused by spectrally similar materials by
quantitatively comparing the degree of similarity of an
unknown to a set of spectrally similar reference spectra.
Tetracorder mitigates coincidental false alarms permitted by
our specific implementation of our shape-matching algo-
rithm by including ancillary information. Finally, Tetracor-
der is not forced to provide a solution; it allows ‘‘no
answer’’ as an answer.
[17] Implicit in our approach is that our library is com-

prehensive and unambiguous. In our experience we have
found that for our applications it approaches comprehensive
status because we have added materials as they have been
found in field tests or for specific applications. However,
Tetracorder cannot resolve ambiguities inherent to spectros-
copy. Any cases where experts differ on the assignment of
specific spectral features is as far as Tetracorder can go. For
example, the controversy surrounding whether spectra of
some portions of Europa’s surface represent hydrated salts

or radiolytic products cannot be resolved by our approach.
However, Tetracorder does solve the problem of how to
inspect large numbers of spectra in a way that mimics the
method of a trained spectroscopist.
[18] In the following portions of this section we will

describe our implementation of the above concept. We will
begin with our shape-matching algorithm and its attendant
normalizations. We will then illustrate our rejection of false
alarms due to similar materials with specific examples. We
will also show examples of coincidental false alarms. We
will show specific examples of nondetections (‘‘no
answer’’s). Closing this section we will describe the expert
system framework in which we implement Tetracorder.
[19] First, we describe Tetracorder algorithms, which are

the individual algorithms the Tetracorder system applies
during analysis. It is our collective opinion that robust
material identification with spectroscopy involves diagnostic
spectral features, as these are the ‘‘fingerprints’’ of any
material. Many analyses of spectra rely on unique spectral
characteristics for identification [e.g., Rencz, 1999 and refer-
ences therein] and the Tetracorder system is similar. The
algorithms implemented in this version of Tetracorder isolate
and analyze spectral features and their continua because the
levels and slopes in a spectrum contain diagnostic informa-
tion as do the absorption and emission features.

2.2. Feature Isolation: Continuum Removal Algorithm

[20] In order to identify a spectral feature by its wave-
length position and shape, it must be isolated from other
effects, such as level changes and slopes due to other
absorbing (or emitting) materials. The first step in such
isolation is continuum definition and removal [Clark and
Roush, 1984]. Continuum removal examples are shown in
Figures 1 and 2 and for several spectral features. A
continuum is removed by division in reflectance, transmit-
tance, and emittance spectra because of exponential absorp-
tion and scattering processes [Clark and Roush, 1984].
Conversely, a continuum should be removed by subtraction
with absorbance or absorption coefficient spectra because
multiple components are additive.
[21] To isolate and identify absorption features, the con-

tinuum removal algorithm first removes a continuum from a
library reference spectrum and from the observed spectrum
using a wavelength interval on each side of the absorption
feature that is to be mapped (Figures 1a, 1b, 2a, and 2b).
This can be described mathematically by:

Lc lð Þ ¼ L lð Þ=Cl lð Þ ð1aÞ

Oc lð Þ ¼ O lð Þ=Co lð Þ; ð1bÞ

where L(l) is the library spectrum as a function of
wavelength, l, O is the observed spectrum, Cl is the
continuum for the library spectrum, Co is the continuum for
the observed spectrum, Lc is the continuum-removed library
spectrum, and Oc is the continuum-removed observed
spectrum.
[22] Most remotely sensed spectra are composed of mix-

tures, not purematerials, and as suchwill have spectral curves
that combine to produce a continuum upon which diagnostic
absorptions may be superimposed. The continuum removal
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algorithm removes the effects of these other absorptions in the
spectrum [Clark andRoush, 1984;Clark, 1999]. For instance,
a sloping continuummodifies the appearance of an absorption
feature by causing a shift of the local minimum in the curve
[e.g., see Clark, 1999] and can also result in the absence of a
local apparent minimum. If the minimum in the reflectance
spectrum was used as a guide, the apparent minimum would
shift with changes in contaminants and grain size. However, if
the continuum is removed, the minima show a more stable
position. Continuum removal normalizes the spectra, thus
reducing the effects of lighting geometry on the level of the
spectrum, as well as effects of contaminants and grain size
variations [see Clark, 1999 and references therein].
[23] Including enough wavelength range in the spectral

data is important to accurately define the continuum. Thus
the definition of each continuum includes a wavelength
interval on each side of the feature (Figures 1 and 2). We
have implemented straight line continua in Tetracorder. The
normalization results in a continuum-removed feature such
as those in Figures 2a and 2b, which can then be compared to
other spectra such as reference spectra of pure materials. In
Figure 1a, which shows spectra from some materials in

Appendix A (an electronic supplement to this paper),
continuum endpoints for diagnostic iron absorptions in
goethite, hematite, and jarosite are shown along with a
remotely sensed spectrum from Cuprite NV.1 Strong atmo-
spheric water absorptions at 1.4 and 1.9 mm in the remotely
sensed spectrum have the potential to interfere with spectral
identifications, as do water absorptions in the surface
materials; hence the continuum endpoints are selected to
avoid these regions. This is most obvious in the selection of
endpoints in the jarosite spectrum (Figure 1a), where the
right side of the jarosite absorption band extends into the
atmospheric water band. Similarly, in Figure 1b, which
shows spectra from materials in Appendix A, the alunite
continuum endpoints were selected to avoid the edge of the
atmospheric water absorption. Such careful selection of
continuum endpoints is crucial to the knowledge base of
the expert system.

2.3. Shape-Matching Algorithm

[24] The apparent depth or strength of an absorption
feature relative to the continuum is dependent on the
intrinsic absorption strength, the grain size, and abundance
of the material as well as the abundance, absorbing nature,

Figure 2a. The continuum removed spectra from Figure 1a
are fit to each other using a modified least squares
calculation. The library reference feature strength is
increased or decreased to best match the observed feature.
Tetracorder compares the least-squares fits to many features
from many library reference spectra to determine which one
matches best. The solid line in each case is the unknown
and the dash double dotted line is the library reference
feature. For each feature the least squares correlation
coefficients (the fits) are given, and along a vertical central
column, the weighted fits are shown. The best match to the
Cuprite spectrum is hematite. Hematite has two features
used in the identification: the 0.9 mm feature gives a fit of
0.988, and the 0.5 mm feature gives a fit of 0.965. The area-
weighted fit is 0.974.

Figure 2b. The continuum removed spectra from Figure 1b
are fit together using a modified least squares calculation.
Kaolinite is the best match to the Cuprite spectrum. The
muscovite spectrum has two features, one near 2.2 and the
other near 2.3 mm. No 2.3-mm muscovite feature could be
detected in the Cuprite spectrum, so the weighted fit is zero
(left hand column). Note the very similar fits between
kaolinite (0.996) and halloysite (0.963), yet the halloysite
profile clearly does not match as well as the kaolinite profile.
This illustrates that small differences in fit numbers are
significant. Alunite has two diagnostic spectral features, but
the 1.5-mm feature is not shown.

1Auxiliary material for this paper is available at ftp://ftp.agu.org/apend/
je/2003JE001847.
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and grain sizes of the other materials mixed with the sample
[e.g., Clark and Roush, 1984]. The spectral feature depth is
generally proportional to the abundance of the material in
the sample (holding grain size constant). The depth of a
feature increases to a maximum with larger grain size, then
decreases as absorption dominates over scattering [Clark
and Lucey, 1984; Lucey and Clark, 1985; Clark, 1999]. The

apparent depth of an absorption feature, D, relative to the
surrounding continuum in a reflectance or emittance spec-
trum [Clark and Roush, 1984] is

D ¼ 1� Rb=Rc; ð2Þ

where Rb is the reflectance at the absorption-band center
(the minimum in the continuum-removed feature), and Rc is

Table 1. Example Tetracorder Commandsa

group 2 \# spectral group
udata: reflectance \# input spectrum must be in reflectance
convolve: no \# no spectral convolution
preratio: none \# no pre-ratio
preprocess: none \# no pre-processing algorithms
algorithm: featfit1 \# analysis algorithm for this step
AVIRIS: [splib04] 27 d \# input library reference spectrum
\# = TITLE = Alunite GDS83 Na63 \# library reference spectrum title
[DELETPTS] \# channels to exclude (global variable)
Alunite GDS83 Na63 \# output title
2 0 \# 2 spectral features, 0 not features
Dw 2.048 2.078 2.247 2.277 ct.04 \# continuum wavelengths, threshold (ct)
Dw 1.466 1.476 1.535 1.555 ct.05 \# continuum wavelengths, threshold (ct)
FITALL>0.5 \# fit thresholds: if below 0.5, reject
output = fit depth fd \# what to output: 3 images: fit, depth, fit*d
na63alun300c \# Output base file name
8 DN 255 = 0.5 \# output 8-bits/pixel, scale 0.5 to DN 255
compress = none \# do not compress output file
action: none \# no subsequent action
endaction \# done with actions
group 2 \# spectral group

udata through algorithm is same as above
AVIRIS: [splib04] 296 d \# input library reference spectrum
\# = TITLE = Montmorillonite Swy-1 \# library reference spectrum title
[DELETPTS] \# channels to exclude (global variable)
Montmorillonite Swy-1 \# output title
1 1 \# 1 spectral feature, 1 not feature
Dw 2.118 2.137 2.267 2.287 ct.04 \# continuum wavelengths, threshold
NOT [NOTMUSCOVITE1] 2 0.12r1 0.3 \# NOT muscovite, relative depth.12, fit.3
\# NOT feature at wavelength 2.340 for:Muscovite GDS113 Ruby
FITALL>0.5 \# fit thresholds: if below 0.5, reject
output = fit depth fd \# what to output
montna \# Output base file name
8 DN 255 = 0.5 \# output 8-bits/pixel, scale 0.5 to DN 255
compress = none \# do not compress output file
action: none \# no subsequent action
endaction \# done with actions
group 3 \# spectral group

udata through algorithm is same as above
AVIRIS: [splib04] 498 d \# input library reference spectrum
\# = TITLE = Lawn_Grass GDS91 (Green) \# library reference spectrum title
[DELETPTS] \# channels to exclude (global variable)
vegetation2.grass \# output title
3 0 \# 3 spectral features, and 0 not features
Dw 0.522 0.552 0.737 0.767 ct 0.05 rct/lct> 1.0 \# continuum wavelengths
Dw 0.870 0.900 1.063 1.093 ct 0.10 \# continuum wavelengths
Dw 1.063 1.093 1.265 1.305 ct 0.10 \# continuum wavelengths
FITALL>0.5 \# fit thresholds: if below 0.5, reject
output = fit depth fd \# what to output
vegetation.map \# Output base file name
8 DN 255 = 1.0 \# output 8-bits/pixel, scale 1.0 to DN 255
compress = none \# do not compress output file
action: case 1 2 3 4 5 \# do additional analyses, case by case
endaction \# done with actions

aFor each spectral feature, the first two numbers represent the continuum interval on the left side, the second two numbers are the right side continuum
interval (see Figure 1, 2). Alunite has two diagnostic features near 2.17 and 1.5 mm. ct = continuum threshold, for example if set to 0.05 the reflectance of
the continuum must be greater than or equal to 0.05. rct/lct = continuum slope: right continuum/left continuum must be greater than the threshold. The
montmorillonite entry shows a ‘‘NOT’’ feature: the 2.2-mm feature must be present, but not a 2.3-mm feature that resembles muscovite. See Figures 1b, 2b.
The third example, detecting vegetation requires three diagnostic features: the chlorophyll at 0.69 mm, and two water features. If found, additional analyses
in cases 1, 2, 3, 4, and 5 are executed. All analyses in a group are compared and the best answer for that group is chosen. For example, the alunite analysis
and the montmorillonite analysis are in the same group. They both have spectral features near 2.2 mm so it is reasonable that the analyses compete. The
answers from each independent analysis are compared and the best answer is chosen.
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the reflectance value of the continuum at the wavelength of
the band center (Figure 3).
[25] Owing to the presence of many materials, the diag-

nostic spectral features of materials measured remotely are
almost always much weaker than those of pure reference
materials. Finally, variations in lighting and local topo-
graphic slope affect the apparent reflectance level of mate-
rials. These factors do not allow direct comparison of
spectra of reference materials to remotely sensed spectra
except in highly specialized cases. Because geologic and
biologic materials are almost always complex mixtures,
comparisons must be made after normalizations that remove
the complicating effects and isolate the diagnostic shape of
the spectral features in question.
[26] The Tetracorder shape-matching algorithm is carried

out in a two step process. First, the local spectral slope (the
‘‘continuum’’) is estimated and removed both from refer-
ence and observed (unknown) by fitting a straight line to
predetermined wavelengths that straddle the diagnostic
spectral region (or regions) of these spectra, then dividing
these lines out of the observed and reference spectra
(equations (1a) and (1b)). The continuum wavelength
ranges for all materials and their diagnostic spectral features
in our library are presented in an electronic supplement.
Appendix A shows a couple of examples from the expert
system and Table 1 shows how the continuum wavelengths
are specified in the expert system.
[27] Because of the near universal weakness of remotely

sensed features relative to those of pure materials, the
intensity of the features must also be normalized prior to
comparison. For example, the features in the AVIRIS
spectrum from Cuprite, Nevada in Figures 1a and 1b are
weaker than the features in any of the reference spectra.
Tetracorder normalizes the intensity of the reference to that
of the unknown by changing the spectral contrast of the
continuum-removed reference over the diagnostic range to
best match the continuum-removed unknown spectrum over
the same range (Figures 2a and 2b). The continuum-removed
depth (which we call ‘‘spectral contrast’’) in a reference
library spectrum absorption feature can be modified by a
simple additive constant, k, so that a shape match between
the unknown and reference feature can be performed. We
simultaneously perform the comparison between reference
and unknown by determining the contrast that maximizes the
correlation between reference and unknown. Equation (3)
governs this process:

L0
c ¼ Lc þ kð Þ= 1:0þ kð Þ; ð3Þ

where Lc
0 is the modified, continuum-removed spectrum

that best matches the observed spectrum. If k is less than
zero, feature strength (spectral contrast) increases; if it is
greater than zero, feature strength decreases. Equation (3)
can be rewritten in the form:

L0
c ¼ aþ bLc; ð4Þ

where

a ¼ k= 1:0þ kð Þ; and

b ¼ 1:0= 1:0þ kð Þ:
ð5Þ

Equation (4) linearizes the spectral feature strength problem,
so a direct solution can be found without iteration. In
Equation (4) we want to find the a and b that gives a best fit
to the observed spectrum Oc. The solution is found using
standard linear least squares:

a ¼ �Oc � b�Lcð Þ=n;

b ¼
�OcLc � �Oc�Lcð Þ=n

�L2
c � �Lcð Þ2=n

;

and

k ¼ 1� bð Þ=b; also : k ¼ a= 1� að Þ ð6Þ

where n is the number of spectral channels in the fit.
[28] Finally, the correlation coefficient, F, to the fit is

derived for that feature:

b0 ¼
�OcLc � �Oc�Lcð Þ=n

�O2
c � �Ocð Þ2=n

;

F ¼ b b0ð Þ1=2:

ð7Þ

The fit, F, is a measure of how well the spectral features
match. Tetracorder uses the highest fit value to decide which
spectral feature is best matched by a given library reference
feature, independently of the feature depth, and thus
independent of the abundance of the material. Figures 2a
and 2b illustrate graphically and numerically the matches
between a remotely sensed spectrum and several Tetra-
corder library minerals.

Figure 3. Characteristics of an absorption feature. A
continuum interval is chosen on each side of the feature to
reduce noise. The continuum intervals in this example are
about 30 nm wide. A continuum is fit between the end
points. The reflectance at the band center (Rb) and the
corresponding continuum reflectance at the band center (Rc)
are found to compute the band depth, D. The continuum is
removed by division from both the library reference
spectrum and from the unknown.
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[29] The effect of different mixing types on shape-match-
ing is shown in Figures 4a and 4b. Figure 4 shows the very
distinct difference between spectra of linear (areal) and
intimate mixtures of alunite and jarosite. Both shape-match-
ing and linear unmixing algorithms that included all wave-
lengths would have difficulty with properly identifying
cases involving the same components and abundances but
different mixture types. However, the spectral shapes of the
mixtures in diagnostic regions of the two minerals are
similar (Figure 4b) and the components could be properly
identified.
[30] Variations in grain size usually do not lead to strong

variations in band shape so Tetracorder’s task at these
wavelengths is to remove the effects of the continuum,
reflectance level, and band intensity in order to carry out
shape comparisons with reference spectra. For example,
continuum-removed and intensity-normalized spectra of the
mineral hypersthene from the pyroxene mineral group, as a
function of grain size, is shown in Figure 5. For a wide
range of grain sizes the shape of the diagnostic feature is
similar. Clay minerals which naturally have fine grain sizes
show much less variation than do pyroxenes. However,
some absorptions are so intense that the absorptions are
saturated and their widths change with grain size. Hematite

and goethite absorptions in the UV and near 0.9 mm often
display these properties [e.g., seeClark, 1999]. In these cases
the shape of the feature can indicate grain size independent
of abundance. The pyroxene spectra in Figure 5 show this
effect weakly. Very large pyroxene grains can be spectrally
distinguished from very fine grains in this case. However,
the pyroxene absorptions shift in wavelength as a function
of composition, making grain size determinations difficult
to separate from compositional variations if a sample is
composed of more than one pyroxene composition.

2.4. Multiple Spectral Features: Weighted Results
Algorithm

[31] For many materials (Appendix A, electronic supple-
ment) we have defined only a single diagnostic spectral
feature in the 0.4 to 2.5-mm spectral range for use in
Tetracorder, despite the fact that for many of these materials
other diagnostic features exist. In many of these cases one
of the multiple diagnostic features present is considerably
stronger than the others. We have found in practice that
including diagnostic features that are too weak actually
degrades performance because the ratio of spectral contrast
to sensor noise is low and inclusion of these features adds
noise to the weighted fit [Swayze et al., 2003]. However, in

Figure 4a. Reflectance spectra of alunite, jarosite, and mixtures of the two. Two mixture types are
shown: intimate and areal. In the intimate mixture the darker of the two spectral components tends to
dominate at any given wavelength. In an areal mixture, the brighter component dominates. The areal
mixture is strictly a linear combination and was computed from the end-members, whereas the intimate
mixture is nonlinear and the spectrum of the physical mixture was measured in the laboratory. Jarosite
dominates the 0.3 to 1.4-mm wavelength region in the intimate mixture because of the strong absorption
in jarosite at those wavelengths and because the jarosite is finer grained than the alunite and tends to coat
the larger alunite grains.
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a few cases multiple diagnostic features are strong and we
have chosen to exploit them. Because the Tetracorder
concept includes direct comparison of quality of fit metrics,
the use of multiple features raises the issue of how to
normalize our fitness metrics so fits to different materials
can be compared.
[32] Tetracorder uses the relative sizes (including the

widths) of reference continuum-removed-spectral features
to compute a weighted fit which is used in the decision
process. The continuum removal and feature fits to multiple
features in a spectrum are illustrated in Figures 1a, 1b, 2a,
and 2b. Three parameters for each spectrum are computed:
weighted fit, Fw, weighted depth, Dw, and weighted fit times
depth (fit � depth), FDw. They are computed by weighting
the relative areas of the absorption features of the reference
library spectrum:

Fw ¼ � ciFi;

Dw ¼ � ciDi; and

FDw ¼ � ciFiDi;

ð8Þ

where ‘‘i’’ is the feature number, ci is the relative fractional
area of library reference features between each feature and
its continuum:

� ci ¼ 1:0: ð9Þ

Fi, Di are the fits (the correlation coefficients) and depths of
the corresponding features. The feature depths and relative
areas are calculated from the fitted library reference
features. The relative area is found by integration of the
continuum-removed feature (the area between the feature

curve and 1.0) divided by the sum of the areas of all features
analyzed for each reference material. Consider an observed
spectrum with weak absorption features. The calculation of
the areas of these features may be dominated by noise and
could lead to bias in the decision process. Thus the areas are
computed from the library reference spectra. This is also a
computational advantage because they are computed only
once and then used in tests against multiple unknown
spectra.
[33] The areas of features help choose the correct solu-

tion. Consider the two muscovite features in Figure 1b (top)
near 2.2 and 2.35 mm. We will call them feature A and B,
respectively. Feature A has a weight of 0.7 and feature B
has a weight of 0.3. If an observed spectrum had two
features with areas A = 0.2 and B = 0.8, it would not be a
pure muscovite. The fit to feature A would be given more
weight, but being weaker, it would be more dominated by
noise. The weighted fit would likely be lower and another
mineral or mineral mixture would likely show a better fit,Figure 4b. Continuum removed spectral features of alunite

and alunite plus jarosite mixture spectra from Figure 4a. The
features for the pure alunite, intimate, and areal mixtures are
very close to the same. The Tetracorder feature least squares
fit of the pure alunite feature to the intimate mix feature has a
correlation coefficient of 0.986 and for the areal mix 0.979.
Variations in grain size and partial vegetation cover
contributing to an imaging spectrometer pixel would cause
variations in fits of similar magnitude.

Figure 5. Reflectance spectra of a pyroxene as a function
of grain size. As the grain size becomes larger, more light is
absorbed, the reflectance decreases, and the absorption
feature bottoms flatten (from Clark et al. [1993b]). Note the
trace tremolite contamination causing the narrow absorption
features near 1.4 and 2.3 mm. The broader pyroxene
absorptions are the continuum background to the narrow
tremolite features. This example shows how the components
in a mixture can be readily identified even though no
unmixing analysis is done. The component features are
‘‘spectrally separated’’ in wavelength. Continuum-removed
feature fits (top) show the similarity in shape of features at
different grain sizes. The small change in shape can be used
to coarsely determine grain size from the spectra,
independent of abundance.
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thus reducing the probability that pure muscovite is the
correct answer.
[34] In the above discussion we described how we derive

our key metrics used for candidate identifications, but
sometimes these are not final decisions. In the next section
we describe how we use these metrics and other constraints
to finalize our decisions.

2.5. Spectral Constraint Algorithms

[35] In the shape-matching exercise performed on each
library entry for an unknown we extract all the constraints we
require to perform and refine detection. The identification of
materials from their spectra is constrained by (1) the good-
ness of fit of a spectral feature to a reference, (2) reflectance
level, (3) continuum slope, and (4) presence or absence of
key ancillary spectral features.
[36] If a spectral match is too poor, we assume either that

the material is not present or that signal-to-noise ratios were
too low to allow detection. If the fit metric is below a set
threshold, the material is rejected as not detected. It is
possible and frequently happens that no library entry passes
this constraint which leads to Tetracorder declaring a ‘‘no
answer,’’ rather than forcing a solution dominated by noise.
Tetracorder evaluates constraints imposed on each spectral
analysis (example constraints are shown in the command set
in Appendix A and Table 1).
[37] Because some materials or combinations of materials

can mimic one another in terms of shape, we add additional
constraints. The first is that the reflectance level of the
continuum of the observed spectrum must be consistent
with the presence of a particular candidate material. If not,
that particular identification will be rejected. Figure 6 shows
an example of a continuum difference between two dissim-
ilar materals (water and olivine). If only a continuum-
removed spectral feature were analyzed, they would appear
similar. Indeed, we have encountered conditions where
shallow water mapped as iron-bearing minerals such as
olivine. In these cases we know water has a low reflectance
and has different continuum slope than many minerals
(continuum slope is discussed below).
[38] In setting reflectance thresholds, consideration must

be given to lighting conditions, contaminants that might be
present, and in special cases, like water, what other effects
might influence levels and spectral features. For example,
shadows are dark, and on the Earth are illuminated by the
blue sky, so spectra of shadows can be similar to that of
lakes and by setting continuum level constraints, dark
shadows can be rejected from being identified as certain
materials. The constraint can be set to a minimum and
maximum for each spectral feature. If a continuum level
does not fit within the minimum and maximum specified,
the candidate material’s detection is rejected. We also use
this constraint frequently to reject very dark materials
because detection is signal-to-noise ratio dependent. The
darker a spectrum, the more spectral features are suppressed
when in an intimate mixture and the higher the signal-to-
noise ratio required to detect that feature. Thus for many
materials the threshold is set at 4% reflectance to eliminate
false alarms owing to noise. In principal the fit constraint
should catch low signal-to-noise ratio cases, but noise can
cause features to occasionally pass this constraint. The
continuum reflectance constraint catches additional cases.

In practice we employ the right, center, and/or left contin-
uum level limits. We should note that continuum level
constraints are not a match to the reference material con-
tinuum because mixtures can change both the average
reflectance and local spectral slopes.
[39] Example continuum constraints are shown in Table 1.

Examine the entries for ‘‘Lawn_Grass GDS91.’’ The
continuum constraints require a minimum reflectance of
0.05 for the 0.69-mm chlorophyll feature and 0.10 for the
0.95 and 1.15-mm water absorptions. This requires an
increasing reflectance from visible to near-IR wavelengths
as is commonly observed in spectra of vegetation. The
levels are set lower than typical grass reflectance levels
because the vegetation may by illuminated by low Sun
angle (e.g., north slope of a mountain in the Northern
Hemisphere).
[40] Just as the continuum reflectance level must be

consistent with experience, so to does the local spectral

Figure 6. Continuum-removed spectral features some-
times have similar overall shapes for different materials.
Here, an example for olivine and water is shown. The
scattering peak at green wavelengths is similar in position to
the green peak in olivine. When the continuum is removed
from both spectra (top), the broad olivine feature roughly
tracks the water response. Tetracorder would normally only
compare the correlation coefficients of the fitted features to
check for olivine. Constraining reflectance levels and the
slope of the continuum can help distinguish between the
two cases. Water has a lower reflectance and a negative
continuum slope but olivine has a higher reflectance and
positive slope.

5 - 10 CLARK ET AL.: IMAGING SPECTROSCOPY REMOTE SENSING



slope across the continuum. The slope constraint we
apply is

slope ¼ Oleft=Oright > X; or

slope ¼ Oright=Oleft > X;
ð10Þ

where Oleft and Oright are the observed continuum levels on
the left and right sides of the feature center, respectively,
and X is a threshold. If the slope in the spectrum falls
below the level set by equation 10, the fit for that feature
(equation (7)) is set to zero. For example, this constraint is
needed in the mapping of iron-bearing soils. The curvature
of the water spectrum in the near IR is sometimes very
similar to the hematite absorption feature after continuum
normalization, so occasionally the goodness-of-fit metric
can pass remotely sensed water as an Fe-bearing mineral.
However, the strong positive visible slope is an additional
required characteristic of some minerals such as hematite,
in addition to its absorption feature shape. Water is
distinguished from Fe-bearing minerals based on slope:
an approximately flat or positive sloping spectrum is
indicative of Fe-bearing soils, while a negative sloping
spectrum is indicative of water spectra. An example of
slope differences of water versus that of an Fe-bearing
mineral is shown in Figure 6.

2.6. Not-Feature Algorithm

[41] Despite our best efforts including the constraints
above, some materials or mixtures of materials have virtu-
ally identical spectral features at some diagnostic wave-
lengths which are too difficult to distinguish. However,
invariably they differ markedly at other wavelengths. For
example, Figure 1b shows spectra of the minerals montmo-
rillonite [(Na,Ca)0.33(Al,Mg)2Si4O10(OH)2 � nH2O] and
muscovite [KAl2(Si3Al)O10(OH,F)2]. These minerals share
a very similar and strong diagnostic absorption near
2.21 mm. Clearly, in this case the term ‘‘diagnostic’’ is used
loosely. More strictly, the 2.21 micron feature is compelling
evidence for the presence of montmorillonite, illite, or
muscovite. However, montmorillonite has no absorption
feature near 2.35 mm but both illite and muscovite have a
feature there. Therefore in testing for montmorillonite, we
attempt to detect a 2.35 micron feature. If such a feature is
detected, montmorillonite is rejected. In this particular case
we borrow the detection parameters from the Tetracorder
test for the 2.35 micron feature of muscovite. If the depth
and fitness parameters for this feature exceed our defined
thresholds we consider the feature detected, and therefore
montmorillonite must be rejected. An analogous example is
illustrated in Figure 2b. In this case the feature fits show
there is no 2.35-mm feature present in the Cuprite AVIRIS
spectrum shown, therefore muscovite cannot be present so
muscovite is rejected (while Figures 1b and 2b show what
appears to be one continuum from about 2.15 to 2.43 mm,
really two features are defined with a common continuum
interval near 2.3 mm).
[42] The detection of a feature in the wavelength position

of a NOT feature rule can be accomplished by measuring
more than one metric. The metrics currently implemented
are band depth threshold (equation (2)) and threshold
relative to the strength of another feature. For example, in

Appendix A and Table 1, the NOT condition to detect
montmorillonite is a 2.35-mm muscovite feature that is
12% the strength of the montmorillonite 2.2-mm feature. If
the 2.35-mm feature strength was determined to be greater
than 12%, montmorillonite would be rejected. In practice,
identifying montmorillonite-muscovite (or illite) mixtures is
possible. The 2.35-mm feature normally is about 30% the
strength of the 2.2-mm feature in muscovites and illites, so
constructing several tests with different levels of the NOT
feature could, in principle, be used to derive several levels
of montmorillonite + muscovite/illite mixtures.

2.7. Diagnostic//Optional Features

[43] Some materials have spectra with less intense and/or
subordinate absorption features in addition to stronger diag-
nostic absorptions. The diagnostic absorptions may be
detectable if the abundance of the material is high enough.
However, weaker absorptions might be concealed by absorp-
tions from other materials or might be too weak to be
detected at low abundances of the material. In Tetracorder,
every feature is assigned as either diagnostic or optional. If a
feature is defined as diagnostic or optional, and it is detected
in the spectrum, its weighted fit will be included in the
analysis and decision process. If an optional feature is not
detected, its fit and depth are set to zero and the material
might still be identified by the presence of other absorption
features (either diagnostic or optional). Of course if a feature
is defined as diagnostic, the feature must be detected in the
spectrum to identify that material. If any diagnostic feature is
not detected, even though other features (diagnostic or
optional) for that material are detected, that material is not
indicated by the spectrum and is declared to be undetected
(fit, depth, and fit � depth are all set to zero).
[44] Care was used in developing the expert system

command set because a material’s diagnostic feature could
potentially be masked by absorptions in other materials. If
that is a possibility, the feature would be flagged as optional
and not diagnostic. For example, hematite and goethite
spectra (Figures 1a and 2a) have features near 0.5 and
0.9 mm. The shorter wavelength features in both minerals
are more intense, and when hematite or goethite is present
in low abundance, the 0.9-mm feature can be absent. Thus
the 0.9-mm feature for both minerals is optional and the
0.5-mm feature is diagnostic in the Tetracorder expert
command set.

2.8. Nothing Found is an Answer

[45] Tetracorder’s spectral feature identification algorithm
and supporting constraints are not forced to return a
detection. Diagnostic spectral features must be present in
the spectrum to find that material in the spectrum. Indeed, it
is possible that all Tetracorder output is ‘‘nothing found.’’
Not finding a material can be important. For example, in
doing an environmental assessment, not finding a toxic
material can be an indicator of environmental health.

2.9. Grouping Decisions

[46] The final aspect of the materials detection process in
Tetracorder is explicitly dealing with broad classes of
detections. Above we discussed how mixtures of materials
might have well-separated diagnostic features, in which
case all such materials can be detected in a spectrum given
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sufficient signal-to-noise ratio. We also discussed how we
deal with materials that have similar or overlapping diag-
nostic features by comparing the fitness parameters and
exploiting ancillary spectral information. In order to achieve
the various detections, Tetracorder analyzes portions of the
spectrum by partitioning or isolating portions of the spec-
trum for various tasks needed to identify different materials.
We call this partitioning groups and cases.
[47] Tetracorder makes decisions by explicitly grouping

reference materials by the wavelength ranges of their
diagnostic features. For example, vegetation and iron-bear-
ing minerals with Fe2+ and Fe3+ absorptions occupy one
group with their diagnostic features in the visible and very
near infrared. Clays and other sheet silicates are grouped
because their diagnostic features dominate the 2 to 2.5-mm
region. Within a group, spectral features can confound one
another so Tetracorder selects a single library entry as

present. Thus to identify mixtures within a group, reference
spectra for those mixtures must be included. On the other
hand, Tetracorder can in principle (and usually in practice)
report a detection from each group and therefore finds
multiple components without specific reference mixture
spectra. Mixtures will be discussed in more detail in
sections 3.2 and 3.3. Section 4.2 defines the groups, cases,
and their wavelength ranges.
[48] Partitioned analyses could be done in parallel or

serially, and Tetracorder does both. Groups are partitioned
decision making analyses that are done independently but in
parallel before doing any case analyses. A case is an
independent analysis partition completed only after all the
group analyses are completed and a specific decision is
made to perform a case analysis. Case analyses can be both
parallel and sequential and invoke additional case analyses.
A group or case analysis can operate in one of two modes:

Figure 7a. Pseudo-true color composite AVIRIS image of Cuprite, Nevada. The image has a width of
10.5 km (614 pixels) and a length of 18 kilometers (972 pixels). The spacing between pixels is 15 meters,
and the size of each pixel is about 18 meters.
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(1) do one analysis and output an answer for that analysis or
(2) do multiple analyses, examining the results from all the
analyses in that group or case, and decide which analysis
gives the best answer and output that result.
[49] Figures 1 and 2 show an example of partitioned

analyses for two groups. In Figures 1a and 2a, multiple
spectral features are compared and a decision is made to
identify hematite as the best answer (Figure 2a). In
Figures 1b and 2b, multiple analyses lead to the decision
that kaolinite is the best answer (Figure 2b). Again, in each
group, only one answer is chosen as the correct answer but
multiple groups lead to multiple answers. In this example,
the Cuprite spectrum is identified as a mixture of hematite

and kaolinite, even though only pure mineral spectra were
used to identify these materials.

3. Tetracorder Applied to Imaging Spectroscopy

[50] Tetracorder was developed largely in response to the
potential of imaging spectroscopy data sets provided by
NASA via the Earth Observing System HIRIS, the Galileo
NIMS, the Cassini VIMS, and potential Mars imaging
spectrometers. However, excellent data sets became avail-
able for testing using the JPL Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor, for which testing
and verification at test sites were accessible by our team.

Figure 7b. The same AVIRIS data shown in Figure 7a were used to synthesize Landsat TM response
for each of the six TM bands in the AVIRIS spectral range. The synthesized data have the same spatial
resolution as AVIRIS (18 m not 30 m of actual TM data) so only the effects of spectral bandpass and
sampling are compared. The TM band ratios shown here are commonly used by researchers to
discriminate surface materials, and the many colors seen here show the power of this method. The color
composite shows the hydrothermal alteration system appearing different from surrounding unaltered
areas, but specific mineral identifications are not possible.
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AVIRIS is arguably the highest performing and most widely
used visible and near-IR imaging spectrometer operational
today for terrestrial remote sensing. With a spectral sam-
pling and bandpass of �10 nm and signal-to-noise ratios
exceeding 500 at most wavelengths, AVIRIS data are
extremely useful for spectral analysis at the individual
spectrum level. Corrections of AVIRIS data for atmospheric
transmission are well developed, effective, and routinely
applied so our applications of Tetracorder detection can
ignore atmospheric effects, except in portions of the spec-
trum where transmittance is so low that essentially no
reflected signal is present in the data. In this section we
will use AVIRIS data collected in 1995 over the Cuprite
Mining District (Figure 7) in Nevada to illustrate the
processes described above.

3.1. Comparison of Analysis Methods

[51] Let us first examine some common analysis methods
and compare results to a spectroscopic analysis. This range
of examples shows that material identification results do not
improve much in ability to discriminate materials until the
analysis becomes quite sophisticated. This may explain how
some in the scientific community have not seen the advan-
tage of imaging spectroscopy. Simple spectral analyses
produce results that are hardly any better than that achiev-

able with data from broader-band multispectral systems. To
illustrate these effects, we synthesized broader-band sys-
tems from the AVIRIS data so that there is no change in
spatial resolution. The signal-to-noise ratio of the synthe-
sized channels is very high, much higher than actual
systems such as TM, and has better atmospheric correction.
Thus the examples and observed limitations in the more
simple methods are not limited by signal-to-noise ratio.
[52] Multispectral systems contain only a few broad

spectral channels. Spectral analysis is not possible with
such systems, so more simplistic approaches have been
developed to produce ‘‘indicator’’ maps. The ratio of the
signals through two different filters (or bands) is called a
band ratio and is probably the simplest computation beyond
a color image. A color image derived from band ratios is
called a color-ratio composite.
[53] A pseudo-true color representation made from three

broad bands simulating the color response of the human eye
(Figure 7a) shows lighter areas that may be indicative of
hydrothermal alteration. Band-ratios can be computed from
measurements of any two spectral channels, whether from
broad-bands or narrow spectral bands. The broad bands of
Landsat Thematic Mapper (TM) were computed from the
AVIRIS data and ratios between the five broad bands were
calculated. A color image of TM band ratios, called a color-

Figures 8a–8c. Cuprite analysis examples. (a) 2.07 mm albedo image. (b) The AVIRIS-synthesized TM
band ratio image is shown for TM band 5 divided by band 7, which indicates a decreasing spectral
reflectance from 1.5 to 2.2 mm. Such slopes are common in spectra of clay minerals but are also common
in spectra of carbonates, sulfates, and generally moist or wet soils, rocks, or other materials. (c) Image of
the AVIRIS 2.07-mm reflectance divided by the 2.17-mm reflectance shows possible kaolinite absorption
or strong spectral slope between these two wavelengths. This ratio should discriminate absorptions near
2.2 mm, but surprisingly, there is little difference compared to the TM ratio image in Figure 8b.
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ratio composite (Figure 7b), shows that many surface
materials are distinguished, but specific mineralogic identi-
fications cannot be made. Further, sometimes (but not
always) the same color is caused by completely different
mineralogy (see verified mineralogy given by Swayze
[1997]). Images such as these are guides for field inves-
tigations and are not mineral maps.
[54] In the next example, let us assume we were inter-

ested in finding locations of the clay mineral kaolinite
[Al2Si2O5(OH)4]. Well-crystallized kaolinite is the primary
mineral used in the production of ceramics. Kaolinite is also
commonly found in hydrothermal alteration systems which
may contain deposits of economically valuable minerals,
such as gold. Weathering of pyrite-rich hydrothermally-
altered rocks can produce acidic waters which can pollute
drinking water sources [e.g., Swayze et al., 2000 and
references therein]. Hydrothermal systems may also have
provided an environment where life evolved on the Earth
and possibly on Mars as well [Shock, 1996; Farmer, 1996
and references therein]. So, for this discussion, let us assume

we are interested in locating well-crystallized kaolinite and
not other minerals in the kaolinite group nor other clay
minerals.
[55] The sequence of images in Figures 8a to 8g shows

the results of increasingly sophisticated analyses. A kaolin-
ite spectrum is shown below each image to illustrate the
analysis method. Our reference spectral library [Clark et al.,
1993a] entry for kaolinite shows it has a high reflectance
(>0.7) at visible wavelengths and a reflectance >0.7 at
2.1 mm, higher than the reflectance typically found for soils
(reflectance �0.2). Could reflectance alone show kaolinite
occurrence? The infrared albedo image (Figure 8a) shows
many levels of intensity (apparent surface reflectance) and
does not discriminate kaolinite from other minerals.
[56] A commonly used ‘‘clay’’ mineral discriminator is a

TM band ratio: TM channel 5 divided by 7. A high 5/7 ratio
indicates a decreasing slope to the spectrum from 1.6 to
2.2 mm, a trait commonly found in clay minerals. The ratio
image of TM bands 5/7 (Figure 8b) shows areas of
decreasing IR slope as lighter portions of the image. The
TM ratio image shows the two alteration centers in the
middle of the image as lighter, indicating possible clay
content, but does not distinguish kaolinite versus other clay

Figures 8d–8e. (d) A ‘‘three-point band depth’’ using
AVIRIS data for Cuprite, Nevada shows locations where an
absorption feature, centered near 2.2 mm, like that in
kaolinite, is expressed in spectra of surface materials. In all
these images, brighter levels indicate a greater spectral
abundance of that material. (e) A corresponding ‘‘three-
point band depth’’ for alunite shows locations where an
absorption feature, centered near 2.17 mm, is expressed in
spectra of surface materials. There is little difference
between the alunite and kaolinite 3-point band depth
images, showing that more sophistication is needed to
spectrally discriminate between these two minerals.

Figures 8f–8g. (f) A spectral feature shape match was
applied to the imaging spectrometer data with a kaolinite
2.2-mm feature shape. The resulting image distinguished
kaolinite better but spectral features from other minerals
also contribute to the bright areas in the image. (g) The
Tetracorder decision results in an image of kaolinite
locations shows much less than seen in the other images.
The Tetracorder expert system has determined locations of
kaolinite versus other minerals based on comparison to a
library of spectral features from many materials.
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mineralogy. Similar slopes are also found in spectra of any
mineral or soil containing OH or water and in spectra of
carbonates [e.g., Clark et al., 1993a] so the spectral slope is
not a unique indicator of kaolinite.
[57] The higher spectral resolution of AVIRIS allows

refinement of the band ratio concept (Figure 8c). A ‘‘nar-
row-band-ratio’’ image computed from the reflectance at
wavelength 2.07 mm divided by the reflectance at 2.17 mm
shows the spectral slope over a short wavelength range
(lighter in the image means greater slope) and has a better
probability of indicating the presence of a narrow absorp-
tion feature than does a broad-band ratio. In this case a few
more areas became darker in the image in Figure 8c
compared with Figure 8b. It may be somewhat surprising
that there is so little difference between Figures 8b and 8c.
That is because there are several minerals in the imaged
area that have strong absorption near 2.2 mm, including
alunite [KAl3(SO4)2(OH)6], muscovite [KAl2Si3O10(OH)2],
and the clay montmorillonite [(Na,Ca)0.33(Al,Mg)2
Si4O10(OH)2 � nH2O].
[58] Because AVIRIS spectra resolve absorption bands, a

simple ‘‘three-point band depth’’ image can be computed

(Figure 8d). Such a depth computation further restricts the
analysis to detect a relative minimum between the two
‘‘continuum’’ end points. The image is coded to show
increasing absorption strength as increasing brightness level
(whiter). The results in Figures 8b, 8c, and 8d show a lot of
similarity, which could lead the analyst to conclude there is
extensive kaolinite in the region. However, as noted above,
other minerals also have absorptions near 2.2 mm that
overlap the kaolinite absorption. A three-point band depth
computation for alunite (Figure 8e) shows nearly the same
image as that for the kaolinite three-point band depth. Field
checking shows that neither the alunite nor kaolinite is as
extensive as indicated by these images [Swayze et al., 1992;
Clark et al., 1993b; Swayze, 1997]. More sophistication is
required to derive the correct locations of kaolinite deposits.
[59] A simple three-point band-depth analysis does not

examine the unique shape of the kaolinite doublet feature nor
distinguish it from similar absorptions in spectra of other
minerals. Our shape-matching algorithm (equations (2)–(9))
was applied to the Cuprite data with a kaolinite spectral
library reference spectrum (Figure 8f). Note that more of
the imaged area is now dark compared with the images in
Figures 8b–8e. The shape matching gives results closer to
the actual locations of kaolinite, but it is still not completely
correct. Other minerals with absorptions near 2.2 mm also
show a match to the least squares fit but usually at reduced
intensity (note the alluvial fans are darker than the source
regions for the fans). Alunite, in particular, gives a response
very similar to kaolinite in this analysis as it did in the three-
point band depth analysis (Figures 8d and 8e).
[60] It should be clear from these examples that there is

no simple algorithm that can be applied to imaging spec-
troscopy data to map a single mineral (or material) without
inadvertent inclusion of other materials. There are too many
other common materials and minerals with absorption
features similar to each other for simple analyses, like
shape-matching algorithms, to map materials robustly. Suc-
cessful materials mapping must be able to distinguish
between materials with similar spectral properties.
[61] The Tetracorder map of kaolinite is shown in

Figure 8g. The distinguishing step is the Tetracorder deci-
sion process: evaluating multiple tests of the spectral feature
to determine the best match. The difference between the
image in Figure 8f and that in Figure 8g is that for most of
the pixels in Figure 8g, Tetracorder determined which pixels
contained minerals other than well-crystallized kaolinite.
This is the quantum leap of the Tetracorder analysis
methods over the previous generations of analyses: the
comparison of results competition and decision process
allows materials to be uniquely distinguished, identified,
and mapped.
[62] A simple pattern-matching algorithm like that in

Figure 8f produces image maps that are dependent on
how much the image is contrast stretched. Compare
Figure 8f to Figure 8h. Any curvature to the spectrum will
give a response in the shape-matching analysis. If the
resulting image is stretched hard so that the smallest
absorption depths show as white, one might conclude that
kaolinite is present throughout many parts of the image
(Figure 8h). This has led to the analyst needing to adjust
images based on their knowledge of the area to indicate
what is there. In other words, the results are subjective.

Figures 8h–8i. These two images are the same as in
Figures 8f and 8g, except that all of the DNs greater than
zero in the image are stretched to appear white. The feature
fit image (h) shows kaolinite-like response over large areas
of the image, where we know kaolinite is not present. The
result from such a simplistic analysis is subjective and
depends on how much the analyst stretches the resulting
image. The Tetracorder result (i), however, shows little
change from Figure 8g. The main difference is that low
abundance areas of kaolinite now appear white in the image.
The result agrees with field work [Swayze, 1997].
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[63] The decision-making process of Tetracorder, how-
ever, is more objective. Tetracorder has made the decisions
as to which spectra indicate the presence of kaolinite and
which ones indicate other minerals through its spectral
identification process. In our Cuprite example, Figure 8i
shows the maximum stretch for the Tetracorder analysis,
and it appears similar to the less stretched image in
Figure 8g. Compare that result with the maximum stretch
in the least squares single feature analysis (Figure 8h),
which shows large portions of the image as kaolinite
compared to the less stretched Figure 8f image. The
Tetracorder results are less subjective because the decision
process has robustly identified spectral features. The hard
stretch of the Tetracorder result (Figure 8i) shows where
the well-crystallized kaolinite occurs with high confidence

even at low feature strengths (which correlates with low
abundance). The kaolinite that mapped in Figures 8g and
Figure 8i agrees with field observations and verifications
[Swayze, 1997 and references therein].
[64] Because Tetracorder spectrally identifies materials, a

color-coded map of materials can be constructed that
presents more information than a single material image
(as in Figure 8f) and is more specific than a color-ratio
composite (as in Figure 7b). If the image in Figure 8g is
colored (in this example, yellow) such that a stronger
absorption feature strength indicates a brighter intensity of
that color, and other mineral images are coded as different
colors, the color-coded images can be combined into
mineral maps (Figures 9a and 9b). Mineral maps such as
these have been extensively field checked to confirm the

Figure 9a. Tetracorder mapping results from AVIRIS imaging spectrometer data over Cuprite, Nevada.
The Tetracorder results distinguish iron-bearing minerals, including hematite grain sizes. Fe3+-bearing
minerals can usually be uniquely identified. However, Fe2+ absorptions are not always diagnostic for
uniquely distinguishing specific mineralogy; thus we usually label our images as simply Fe2+-bearing.
The different colors of Fe2+-bearing minerals usually indicate distinct mineralogy or lithologic units.
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accuracy of the algorithm [e.g., Swayze, 1997]. Comparison
of the images in Figure 7 and 8 to those in Figure 9 show
how much more information can be derived from imaging
spectroscopy compared to that from broad-band remote
sensing. The minerals in Figure 9a correspond to the
Tetracorder group analysis for the electronic absorptions
in the visible and near-IR, while those in Figure 9b
correspond to the group analysis for vibrational absorptions
occurring primarily in the 2–2.5 mm wavelength region.

3.2. Decisions in Real-World Situations

[65] The decision processes we have discussed so far are
straightforward but give no measure of the difficulty in
making correct decisions in real-world situations. To
begin, we will use data over ‘‘alunite hill’’ in the Cuprite
scene where well-exposed outcrops of muscovite, alunite,
kaolinite, and other minerals are present. Figure 10 shows
index images of Cuprite from Figures 9b (mineral map) and

Figure 7a (pseudo-true color) and higher spatial resolution,
low-altitude AVIRIS data from 1998. Figure 10 also shows
a traverse across a portion of alunite hill that has been field
sampled and the fits derived from Tetracorder analyzes of
low-altitude AVIRIS data for six minerals/mineral mixtures
along the traverse. Of note are small differences between
some of the decisions: fit value differences of <0.01 when
the fit is greater than 0.95 are significant!
[66] We show in Figure 11a the mapped depths, fits, and

fit � depths for six minerals plus mixtures from the analysis
of the AVIRIS data that are shown in Figure 10. The band
depth maps (Figure 11a, left column), where bright repre-
sents the deepest band and dark represents the shallowest,
are all very similar except for the muscovite. This raises the
issue of how to use these band depth maps to distinguish the
minerals. The band depth maps for kaolinites, alunites, and
mixtures are highly correlated, suggesting that applying a
simple threshold to the images will give rise to many false

Figure 9b. Tetracorder mapping results from AVIRIS imaging spectrometer data over Cuprite, Nevada.
The Tetracorder results distinguish kaolinite minerals as well as many others, show a much more limited
extent of kaolinite than was seen in Figures 8a–8f and 8g, separate kaolinite from alunite areas, and also
indicate where both occur as mixtures.
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alarms or in other words ambiguous detections. The same is
true for the fit and fit � depth data (Figure 11a, center and
right, respectively).
[67] We could define a detection of a mineral where the

band depth of one exceeds that of another, perhaps scaled to
their relative strengths in the library of reference spectra.
Such an ‘‘identification’’ based on band depth is shown in

Figure 11b, left column. By choosing the maximum depth,
we see that different areas show different mapped minerals.
However, this method would include all the factors besides
relative abundance which control band depth. Further, this
method would not distinguish a pure exposure from a
mixture dominated by one component or the other. Indeed,
from our field data, we know the mineral maps based on

Figure 10. Tetracorder mapping over ‘‘alunite hill.’’ The upper left index image is a portion of Figure 9b
for context. The other index images zooming in are low-altitude AVIRIS data from a 1998 flight having
approximately 2.3 m/pixel. A traverse across a portion of alunite hill shows varying mineralogy along the
traverse. The samples along the traverse line were collected and analyzed in our laboratory, including
XRD analysis. The Tetracorder fit values for the six dominant minerals/mixtures are shown in the plot.
Note the scale change. The colors of the curves match the colors in the map and those along the traverse
line. Tetracorder chooses the highest fit in the identification process. There are subtle differences in fit
values for which decisions are made: sometimes differences less than 0.01 are significant. The kaolinite
outcrop labeled Y at pixel position 26 was nearly impossible to identify in the field as all rocks were
similarly bleached and fine grained, but field sampling (locations numbered) at station 5 verified the
Tetracorder identifications. Note the relatively small difference in fit values between kaolinite and alunite
and even smaller differences between mixtures.
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maximum depth are not correct. Neither are the maximum
fit � depth maps (Figure 11b, right column).
[68] Contrast the maximum band depth maps (Figure 11b,

left column) with maps of maximum goodness of fit in
(Figure 11b, center column). Clearly, the patterns mapped
by maximum fit are different than either maximum depth or
fit * depth, but which is correct? Some have suggested that
plotting the value of one parameter (like depth) on one
mineral against the same parameter of another mineral
would show the separation between the two (this is called
a two-dimensional histogram). The degree of separation,
however, is not necessarily indicative of a correct answer.
Proof of the correct answer requires ground sampling to
show the mapped minerals are correctly identified.

[69] We conducted a traverse across part of alunite hill,
doing field sampling and subsequent X-Ray Diffraction
(XRD) analysis of the collected field samples. Figure 12
shows the results for sample locations shown on Figure 10.
The field sample numbers (1–7) indicate the XRD sampling
locations (Figures 10 and 12). In Figure 12 the spectra of the
field samples, AVIRIS spectra, and reference spectral
features used to make the identifications in Tetracorder are
shown. Note the subtle absorption feature shifts in the Na-K
alunite compared to other alunites (the arrows on the diagram
are all at the same wavelength). It is small spectral changes
like these shifts that mean the difference in correct spectral
identifications and why the fits between such similar spectra
are so small. The XRD analysis results are shown in Table 2,

Figure 11a. The six dominant minerals/mixtures from the alunite hill traverse in Figure 10 were
mapped using Tetracorder with the identification step turned off to illustrate the derived depths, fits and
fit � depth images. Note the similarity of the images; the muscovite image shows the greatest difference.
Most pixels show a response (illustrated as increasing brightness) to the least squares fitting of the
features for each mineral. This is due to the similarity in the spectral features which all occur near 2.2 mm,
not because all these materials are present in these locations. Compare with Figure 11b.
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first seven entries. The Tetracorder and XRD results for this
traverse confirms that the maximum fit correctly identifies
the observed mineralogy. Note the small vein of kaolinite
at field sample location 5 is correctly mapped by the
Tetracorder fit value (see Figure 11b, middle column). Note
also that the maximum depth and fit � depth (Figure 11b)
miss the alunite + kaolinite mixture, but the maximum fit
correctly shows it, agreeing with the traverse results.

3.3. Tetracorder and Mixtures

[70] When different materials have widely separated
spectral features and occur in different Tetracorder groups,

Tetracorder deals with mixtures by explicitly detecting the
separate components. By definition, a detection of more
than one material constitutes a detection of a mixture. When
a mixture occurs within a group the solution is more
complicated. In this case, mixtures are particularly insidious
because the shape of a spectrum of a mixture is a poor fit to
both of the components of the mixture.
[71] A simple mixture series that illustrates Tetracorder

identification of mixtures is shown in Figures 13a and 13b.
Using a simple linear combination we constructed areal
mixture spectra for a montmorillonite-kaolinite mixture
series. In Figure 13a (top) we show the pure kaolinite

Figure 11b. Illustration of choosing the maximum value to identify materials. The depth column
(left) makes an ‘‘identification’’ assuming the maximum depth, the fit column (middle) assumes the
maximum fit, and the right column assumes the maximum fit � depth. For materials that are not
maximum at a given pixel, the value of the pixel is set to zero. Can depth be used for identification? The
alunite + kaolinite row illustrates why identification based on depth is incorrect: the depth and fit � depth
columns show no alunite + kaolinite, inconsistent with field verification results. Only the identification
based on fit agrees with verification data. Identification is based on spectral feature position and shape
and not on feature strength.
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(red) and montmorillonite (green) spectra and a 50-50 mix
(blue). In Figure 13a (bottom) is a mixture series between
the two end members. If we only used the kaolinite and
montmorillonite end members and fit each of the mixtures
to these end members with Tetracorder, we would derive the
fit curves in Figure 13b (top). Where the kaolinite fit is
higher than that for montmorillonite, kaolinite would be
chosen as the answer (red on Figure 13b, top). Similarly for
montmorillonite (green on Figure 13b, top). Clearly the fit
value ‘‘droops’’ as the mixture approaches about 60:40 (the
asymmetry is due to the area of the reference spectral
features; see section 2.4). Mixture reference spectra need
to be included if we want to identify mixtures.
[72] If we include a 50-50 mixture spectrum in the

Tetracorder reference library (blue in Figure 13a), then
Tetracorder can find one of three answers: pure kaolinite,
pure montmorillonite, and kaolinite-montmorillonite mix-
ture. Applying the mixture series using the three reference
spectra, Tetracorder would derive the fits shown in
Figure 13b, bottom. Here we see that the mixture is identi-
fied between about 27% to 82% montmorillonite, otherwise
the pure end members are identified. More reference mixture
spectra could be added to do finer binning of the mixture
series, but note how small the differences in fit would be to
distinguish between bins. Finer discrimination of kaolinite
versus 50% kaolinite + 50% montmorillonite would require
fit differences on the order of <0.01 with fits >0.99. The two
small points plotted at the pure end members, labeled ‘‘v’’ in
Figure 13b indicate the degradation of the fit due to an areal
mixture of 50% dry, nonphotosynthetic vegetation in the
spectra. The fact here is that other components will degrade
the fits, so one wonders how accurately such mixtures could
be separated. Add the issues of grain-size effects, coatings,
intimate versus areal mixtures, and accurate fine abundance
binning of the mixture series becomes problematic. We have
included coarse mixture bins such as that shown here in the
Tetracorder reference library to the extent we believe such
mixtures can be differentiated. This solution to mixture
problems is simple and surprisingly effective: we include a
small number of mixtures as library entries and do not try to
rigorously refine the mixture amounts.

4. Tetracorder Expert System

[73] The development of Tetracorder has been evolution-
ary, and early in the development process it became evident
that using an expert system structure facilitated development
of spectral identification methods. We regularly add new
constraints, minerals, and new types of analyses to our
system. Using an expert system gives us ease of modification
and a logical layout for implementing our constraints as a set
of parallel and hierarchical rules. However, there is no reason
why our concept cannot be implemented in other ways.
[74] Specifically, an analysis of a spectrum proceeds as

follows:
[75] First, before analysis of spectra, prepare the spectral

library: remove the continuum from each feature, compute
relative areas, and find absorption/emission minima/maxima.
These computations need only be performed once, thereby
speeding up the imaging spectroscopy analysis.
[76] Second, choose algorithm(s) to be applied. For the

spectral feature analysis algorithm the following describes

Figure 12. Spectra from the alunite hill traverse from
Figure 10. The spectra from the AVIRIS pixel where a
sample was collected is shown in blue, the laboratory
spectrum of the field sample is shown in black, and the
reference spectral feature(s) used by Tetracorder for
identification are shown in red. The mineral listed is what
Tetracorder found and agrees with the XRD analysis of the
sample (Table 2).
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Table 2. Example Tetracorder Verification Resultsa

Sample ID Sample Location Tetracorder Result Verification

Cuprite, Nevada
CU02-1A
CU02-1D
(pixel is a
linear mix
of two
rock types)

Alunite Hill Wctn
traverse station 1

goethite, med.high

Al-muscovite

XRD: CU02-1A = muscovite (M),
quartz (m), clinochloreb (m);
CU02-1D = albite (M), quartz (M),
muscovite (tr), montmorillonite (tr),
dickite? (tr), kaolinite (tr)
LS: CU02-1A = high Al-muscovite, chlorite;
CU02-1D = trace goethite, med. Al-muscovite

CU02-2A Alunite Hill Wctn
traverse station 2

Fe-mineral(s),
pxl kaolinite or
wxl kaolinite + other

XRD: quartz (M), wxl kaolinite (m),
dickite? (tr), K-alunite (tr)
LS: tr. Fe-mineral(s), kaolinite, alunite (tr)

CU02-3A Alunite Hill Wctn
traverse station 3

Fe-mineral(s),
alunite + kaolinite

XRD: quartz (M), K-alunite (m), kaolinite (m),
hematite (tr)
LS: tr. Fe-mineral(s), K-alunite + kaolinite

CU02-4A Alunite Hill Wctn
traverse station 4

Fe-mineral(s),
Na-K alunite

XRD: quartz (m), K-alunite (m),
Na-alunite (m), calcite (tr), kaolinite (tr)
LS: two component alunite
(XNa =.05 and XNa =.74)

CU02-5B Alunite Hill Wctn
traverse station 5

Fe-mineral(s),
wxlkaolinite

XRD: quartz (M), kaolinite (m), calcite (tr),
hematite (tr)
LS: tr. Fe-mineral(s), wxlkaolinite, tr. alunite

CU02-6A Alunite Hill Wctn
traverse station 6

Nanohematite,
alunite + kaolinite

XRD: quartz (M), K-alunite (m), kaolinite (m),
hematite (tr), calcite (tr), dolomite (tr)
LS: nanohematite, alunite, koalinite

CU02-7A Alunite Hill Wctn
traverse station 7

Fe-mineral(s),
K-alunite

XRD: quartz (M), K-alunite (m)
LS: tr. Fe-mineral(s), Na-K alunitec

CU91-20A N part Ectn Jarosite, alunite +
kaolinite CUMC-1A

XRD of coating: K-jarosite
LS: jarosite

CU91-228A Central part Wctn
along E margin

Jarosite, alunite +
kaolinite CUMC-2B

XRD of coating: K-jarosite
LS: jarosite, alunite

CU91-236A Central part Wctn
along W margin
CUMC-3C

Goethite, halloysited or
wxl kaolinite + muscovitee

XRDe: goethite, kaolinite, quartz
LS: goethite

CU91-223A NW part of Ectn
CUMC-4D

Hematite, kaolinite XRD: pxl hematite, kaolinite, quartz,
calcite, and tridymite (tr)?
LS: hematite and kaolinite

CU91-238A SW part of Wctn
CUMC-5E

Chlorite +
muscovite/illite

XRD: Fe-chlorite, muscovite, quartz,
and kaolinite
LS: chlorite and muscovite/illite

CU91-200A Koalinite Hill, S part
of Ectn CUMC-6F

Wxl kaolinite XRD: wxl kaolinite, quartz, feldspar, and alunite
LS: wxl kaolinite

CU00-19A SW part of Ectn Hematite, pxl kaolinite or
wxl kaolinite +
muscovite/illite/ smectite

XRD: clay separate contains wxl kaolinite,
smectite (tr), and illite (tr)
LS: hematite, pxl kaolinite or wxl
kaolinite + muscovite/illite/smectite

CU00-20A SW part of Ectn Hematite, halloysite or
wxl kaolinite +
muscovite/illite/ smectite

XRD: clay separate contains wxl smectite,
wxl kaolinite, illite? (tr) LS: hematite, halloysite
or wxl kaolinite + muscovite/illite/smectite

CU91-242D SW part of Wctn
CUMC-9I

Jarositef + goethite,
halloysite or wxl kaolinite +
muscovite/illite/ smectite

XRDf: halloysite, quartz, mica, alunite,
possibly dickite
LS: halloysite or wxl kaolinite + muscovite/illite/smectite

CU91-219B Dickite Ridge, SW part
of Wctn CUMC-10J

Jarositef + goethite, dickite XRDf: dickite plus some solid-solution
with kaolinite, quartz, calcite
LS: dickite

CU91-217H Alunite Hill, SW part
of Wctn CUMC-7G

Na - K alunite XRD: Na-alunite and quartz
XRF: alunite XNa = 0.64
LS: Na - K alunite (XNa = 0.65)

CU91-217G Alunite Hill, SW part
of Wctn CUMC-8H

Trace Fe-mineral,
K-alunite

XRD: K-alunite and quartz
XRF: alunite (XNa = 0.05)
LS: K-alunite (XNa = 0.0)

CU91-6A SE part of Ectn
CUMC-11K

Trace Fe-mineral
hydrated quartz

XRD: quartz SEM: chalcedony
LS: hydrated quartz

CU93-260B Buddingtonite Bump,
W central portion of
Ectn CUMC-12

Jarositef, buddingtonite ±
Na-montmorillonite

XRDf: buddingtonite in solid-solution with
K-feldspar, also quartz
LS: buddingtonite and Na-montmorillonite

CU00-5B S part of Wctn High Al-muscovite/illiteg XRD: quartz (M), illite (both 1M and 2M2 polytypes)
EM: high Al-illiteLS: high Al-muscovite/illite

CU91-252D SW part of Wctn
CUMC-13M

Fe-mineral(s), med. high

Al-muscovite/illite
XRD: quartz (M), muscovite (mostly 2M1
with trace 1M polytypes), clinochlore (tr)
EM: med. high Al-muscovite

LS: med. high Al-muscovite
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Table 2. (continued)

Sample ID Sample Location Tetracorder Result Verification

CU91-250A SW part of Wctn
CUMC-27

Fe-mineral(s), med. low

Al-muscovite/illite
XRD: quartz (M), muscovite (both 2M1 and
1M polytypes)
EM: med.low Al-muscovite

LS: med. low Al-muscovite

CU98-8H N part of Wctn
CUMC-26

Fe-mineral(s), low
Al-muscovite/illite

XRD: quartz (M), muscovite (both 1M and
2M1 polytypes)
EM: low Al-muscovite

LS: low Al-muscovite

CU00-13A 4 km NW of Wctn
CUMC-15

Fe-mineral(s),
nontroniteh

XRD: clay separate contains smectiteh,i (M),
kaolinite (tr), mica (tr) LS: nontronite

CU00-2C Near Buddingtonite Bump,
W central portion of Ectn

Fe-mineral(s),
NH4-smectite

XRD: quartz (M), sanidine (M), orthoclase (M),
cristobalite (M), montmorillonite (tr)j,k

LS: NH4-smectite.

Leadville, Colorado
LV96-1GH Venir Pile 30 m station Goethitel, muscovite/illite XRDl: bulk: quartz (M), muscovite (m), microcline (tr),

Albite (tr), K-jarosite (tr), clinochlore (tr), kaolinite (tr),
ankerite (trace?) LS: goethite and muscovite/illite

LV96-1KL Venir Pile 50 m station Jarosite + goethite,
muscovite/illite

XRDl: surface: quartz (M), amorphous component (M),
K-jarosite (tr), illite (tr) orthoclase (tr), kaolinite (tr)
LS: jarosite + goethite, muscovite/illite

LV96-1QR Venir Pile 80 m station Jarosite + goethite

muscovite/illite
XRD: surface: quartz (M), amorphous component (M),
K-jarosite (M), illite (tr), goethite (tr), kaolinite (tr)
LS: jarosite + goethite, muscovite/illite

LV96-1UV Venir Pile 100 m station Jarosite,
muscovite/illite

XRD: surface: muscovite (M), illite (M), amorphous
component (M), quartz (m), K, H3O-jarosite (m),
Na-jarosite (tr), plagioclase (tr), K-feldspar (tr)
LS: jarosite, muscovite/illite

LV96-1A2B Venir Pile 130 m station Jarosite,

muscovite/illite
XRD: bulk: quartz (M), muscovite (m), pyrite (m), K,
H3O-jarosite (tr), microcline (tr), kaolinite (tr),
amorphous component (tr).
LS: jarosite, muscovite/illite.

LV96-1E2F Venir Pile 150 m station Jarosite,
muscovite/illite

XRD: surface: quartz (M), muscovite (m),
coquimbite (m), pyrite (m), amorphous component (m),
orthoclase (tr), kaolinite (tr). Bulk: quartz (M),
coquimbite (m), K,H3O-jarosite (tr), pyrite (tr),
montmorillonite (tr), muscovite (tr), kaolinite (tr),
lanarkite (trace?).
LS: jarosite, muscovite/illite

LV96-1M2N Venir Pile 190 m station Goethite,

muscovite/illite
XRD: surface: quartz (M), geothite (m), muscovite (m),
K-jarositem (m), amorphous component (tr)
LS: geothite, muscovite/illite

LV96-1O2 Venir Pile 200 m station Goethite,
muscovite/illite

XRD: surface: quartz (M), amorphous component (M),
K-jarosite (m), geothitej (tr), illite (tr)
LS: geothite, muscovite/illite

LV95-25 Apache Tailings Copiapite XRD: bulk: quartz, sulfur, H3O-jarosite, Na-jarosite,
ferricopiapite, gypsum, fibroferrite, copiapite.
XRD sample from approximately the same
site as AVIRIS pixels

Tailings Oregon Gulch Tailings Pyrite FM: pyrite as identified by its crystal
morphology and brassy color

Water Lakes, streams Water FM: water agrees with published maps
and field observations

Vegetation General-all
over scene

Vegetation FM: vegetation agrees with published maps
and field observations

Arches National Park, Utah
Morisson
Formation

Morisson Formation,
Arches N. P.

Fe
2+
mineral(s),

muscovite/illite
FM: Fe-illite, agreement with published
geologic map [Doelling, 1985]

Mancos
Shale

Mancos Shale,
Arches N. P.

Goethite,

montmorillonite

FM: goethite, smectite, agreement with published
geologic map [Doelling, 1985]

Water Colorado River and
small lakes,
Arches N. P. region

Water FV: water, agreement with published maps
and field observations (e.g., the Colorado River)

Dry grass Dry grass,
Arches N. P. region

Dry long grass FV: dry grass, various types

Green grass Farm field s of
Colorado rover

Lawn grass FV: green grass farm field,
lawns in the town of Moab

ANP90-14 Desert varnish,
Arches N. P.

Desert varnish FV: desert varnish, float from
outcrops near Wolf Ranch.

ANP91-15G Upper Chinle Formation Hematite,
muscovite/illite

FM: hematite, illite, agreement with
published geologic map [Doelling, 1985]
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Sample ID Sample Location Tetracorder Result Verification

ANP93-10A Upper Ferron
Sandstone Mb.

Fe
2+-bearing mineral +
hematitef (Fe3+)
kaolinite-muscovite/illite
intimate mix

XRDf: muscovite, quartz, calcite, microcline, orthoclase
FM: goethite, kaolinite group, agreement with
published geologic map [Doelling, 1985]
LS: hematite or goethite (Fe3+) with Fe2+-bearing mineral,
kaolinite group mixed with weak muscovite/illite

ANP93-10B Upper Ferron
Sandstone Mb.

Fe
2+-bearing mineral5,
calcite

XRDf: calcite, quartz. FM: agreement with published
geologic map [Doelling, 1985] LS: weak
Fe

2+-bearing mineral, kaolinite group, calcite
ANP93-8 Middle Ferron

Sandstone Mb.
Goethitef (coarse grained),
kaolinite + muscovite/illite
intimate mix

XRDf: calcite, kaolinite, quartz, albite, orthoclase
FM: agreement with published geologic map [Doelling, 1985]
LS: goethite, kaolinite group, muscovite/illite.

ANP93-12 Lower Ferron
Sandstone Mb.

Goethite, muscovite/illite FM: agreement with published geologic map [Doelling, 1985]
LS: geothite, trace kaolinite group, muscovite/illite

ANP93-14 Entrada sandstone,
Delicate Arch Trail

Nanohematite
f,

kaolinite + muscovite/illite
intimate mix

FM: agreement with published geologic map [Doelling, 1985].
XRD: calcite, kaolinite, quartz, orthoclase
LS: hematite (poorly crystallized), kaolinite group,
muscovite/illite, trace calcite

ANP91-22 Cedar Mountain
Formation

Fe2+-bearing mineralf,
kaolinite + muscovite/illite
intimate mix

XRDf: calcite, illite, quartz, orthoclase,
poorly crystalline illite or clays FM: agreement
with published geologic map [Doelling, 1985].
Blue-green color consistent with Fe2+illite LS:
Fe2+-bearing minerals, calcite,
kaolinite + muscovite/illite

Canyonlands National Park, Utah
CNP91-18 Wingate Sandstone Hematite

f,
halloysite/kaolinite
mix

XRDf: trace kaoliniteFM: hematite, agreement
with published geologic map [Huntoon et al., 1982]
LS: hematite, kaolinite group minerals.

CNP91-15 Keyanta Formation Hematitef, dolomite XRDf: dolomite, kaolinite, calcite, quartz, orthoclase
FM: agreement with published geologic map
[Huntoon et al., 1982]
LS: hematite, dolomite, trace clay at 2.2-mm

CL00-3A Upheaval Dome Area Amorphous Fe-hydroxide
(weak Fe

3+), calcite + dolomite.
LS: weak Fe

3+ and weaker
Fe2+ absorptions, calcite + dolomite

Water Lakes, streams Water FM: agrees with published maps
and field observations of water

Vegetation General-all over scene Vegetation FM: agrees with published maps
and field observations vegetation

Oquirrh Mountains region, Utah
MKR99-81 Mercur Canyon outwash,

Utah 40�17038.7300N
112�16031.0600W

Goethitef,
pxl kaolinite or
kaolinite + muscovite

XRDf: quartz (M), kaolinite (m), calcite (m),
dickite (m), gypsum (m), muscovite (tr),
plumbogummite (tr)
LS: goethite, kaolinite

MKR99-88 Mercur Canyon outwash,
Utah 40�13059.0900N
112�17028.5000W

Goethite
f, halloysited or

kaolinite + muscovite

XRDf: quartz (M), calcite (m), kaolinite (m),
dickite (m), muscovite (m), albite (tr),
plumbogummite (tr)
LS: goethite, kaolinite

MKR00-89 Mercur Canyon outwash,
Utah 40�14003.4500N
112�17021.0000

Goethitef, halloysited or
kaolinite + muscovite

XRDf: quartz (M), calcite (m), kaolinite (m),
dickite (m), muscovite (tr), albite (tr),
plumbogummite (tr)
LS: goethite, kaolinite

MKR99-90 Mercur Canyon outwash,
Utah 40�14011.0500N,
112�17023.5100W,

Goethite
f, halloysited or

kaolinite + muscovite

XRDf: quartz (M), calcite (M), kaolinite (m),
dickite (m), muscovite (m), albite (tr),
dolomite (tr)
LS: goethite, kaolinite

MKR99-94 Mercur Canyon outwash,
Utah 40�17045.6100N
112�16029.8300W

Goethitef, halloysited or
kaolinite + muscovite

XRDf: quartz (M), kaolinite (m),
calcite (m), muscovite (m), albite (tr),
orthoclase (tr), dolomite (tr)
LS: goethite, kaolinite

MKR99-95 Mercur Canyon outwash,
Utah 40�17047.20 N
112�16031.6800W

Goethitef, halloysited or
kaolinite + muscovite

XRDf: quartz (M), calcite (M), kaolinite (tr),
albite (tr), orthoclase (tr), dolomite (tr),
muscovite (tr)
LS: goethite, kaolinite

MKR99-96 Mercur Canyon outwash,
Utah 40�17049.4100N
112�16033.7000W

Other Fe3+bearing
minerals

XRD: quartz (M), calcite (M), kaolinite (m),
muscovite (m), albite (tr), orthoclase (tr),
dolomite (tr)
LS: Fe3+mineral

MKR99-97 Mercur Canyon outwash,
Utah 40�17044.7000N
112�16028.3100W

Calcite + muscovite XRD: quartz (M), kaolinite (m),
dickite (m), calcite (m), muscovite (tr),
orthoclase (tr), plumbogummite (tr)
LS: goethite, kaolinite, calcite (acid fizz)

Table 2. (continued)
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Sample ID Sample Location Tetracorder Result Verification

MKR99-98 Mercur Canyon outwash,
Utah 40�17039.4000N
112�16025.3100W

Goethite
f, halloysited or

kaolinite + muscovite

XRDf: quartz (M), calcite (M), kaolinite (tr),
dickite (tr), gypsum (tr), muscovite (tr),
orthoclase (tr)
LS: goethite, kaolinite

MKR99-100 Mercur Canyon outwash,
Utah 40�17034.0200N
112�16022.3300W

Fe3+-bearing mineral,

calcite, muscovite

XRDf: calcite (M), quartz (M), muscovite (tr),
albite (tr), orthoclase (tr), dolomite (tr), kaolinite (tr)
LS: Fe3+mineral, muscovite, calcite

MKR99-101 Mercur Canyon outwash,
Utah 40�17031.5400N
112�16020.1900W

Nanohematite XRDf: quartz (M), calcite (M), dolomite (tr),
albite (tr), magnesiohornblende (tr),
muscovite (tr), orthoclase (tr)
LS: weak Fe3+ consistent with very

fine grained hematite (e.g., nanohematite)
Water Lakes, streams Water FM: water agrees with published

maps and field observations
Vegetation General-all

over scene
Vegetation FM: vegetation agrees with published

maps and field observations

Summitville, Colorado
SM93-101 Quartz Latite

Porphery, Mine area
Alunite FV: hand specimen identified as alunite

LS: Na-alunite.
SM93-14A Mine area,

edge of pond
‘‘Green slime’’ copper
bearing soil, jarosite

XRDf: quartz (m) other phases amorphous and uncertain.
FM: sample collected from this location is the
reference spectrum for copper-bearing soils.
Tetracorder maps observed locations as ‘‘green slime.’’
LS: peak at 0.55 mm characteristic of a
copper-bearing solid

BZ93-1 Deposits on banks and
rocks downstream
from alteration zones

Schwertmannite

(poorly crystallized
Fe

3+-bearing mineral)

XRD: Schwertmanite possible near detection limit,
otherwise only quartz (tr) LS: poorly crystallized
Fe

3+-bearing mineral

SU93-103 Summitville Mine Alunite XRD: quartz (M), alunite (M), pyrite (tr), kaolinite (tr),
LS: alunite

SU93-106 Summitville Mine Amorphous Fe-hydroxide
(Fe3+ absorption),
muscovite + jarosite

XRDf: quartz (M), phlogopite (m), albite (m),
microcline (m)
LS: Fe3+-bearing coating

Water Lakes, streams Water FM: water agrees with published maps and
field observations

Vegetation General-all
over scene

Vegetation FM: vegetation agrees with published maps and
field observations

Mountain Pass, California
Calcite Calcite, Mtn Pass Calcite GM: calcite (acid fizz)
Dolomite Dolomite, Mtn Pass Dolomite GM: dolomite

Epidote Epidote, Mtn Pass Epidote GM: epidote
MP395r3A Mohawk Hill Calcite XRD: calcite (M), vermiculite-2M (M),

clinochrysotile-1Mc1 (m), orthochrysotile-6Oc1 (m),
dolomite (tr), quartz (tr), LS: calcite (acid fizz)

MPBWA Mtn Pass Goethite
f, muscovite XRDf: muscovite-3T (m). quartz (m) albite (M),

clinochrysotile-2Mc1 (tr)
LS: goethite, muscovite/illite

MPCMA2a Coliseum mine area Goethite, muscovite XRD: muscovite-3T (m). illite-2M1 (m). quartz (m)
microcline, (m) albite (m), goethite (tr)
LS: goethite, muscovite/illite

MPCMA2b Coliseum mine area Goethite, muscovite XRDf: muscovite-2M1 (m), quartz (m), microcline (m)
albite (m), calcite (tr)
LS: goethite, muscovite/illite.

MPCMA2f Coliseum mine area Goethite (coarse grained),
muscovite

XRD: goethite (m), quartz (m), orthoclase (tr),,
muscovite-2M1 (tr)
LS: coarse grained goethite, muscovite/illite

MPCM1.a-a Coliseum mine area Siderite, Fe2+ XRD: siderite (M), pyrite (M), muscovite-2M1 (tr),
quartz (tr) FV: pyrite, siderite
LS: siderite, strong Fe

2+, trace 2.2-mm absorption
MH395B.1 Mohawk Hill Calcite + dolomite XRD: calcite (M), dolomite (m),

vermiculite-2M (m), clinochrysotile-2Mc1 (tr)
and/or lizardite-1T (tr), quartz (tr), albite (tr)
LS: calcite (acid fizz) + OH bearing phase

MH395Br3a,B Mohawk Hill Calcite + dolomite XRD: orthochrysotile-6Oc1 (M), clinochrysotile-2Mc1 (M),:
lizardite-1T (m), calcite (m), quartz (tr),
kaolinite-1Md (tr), dolomite (tr), muscovite-2M1 (tr)
LS: lizardite or chrysotile

MPCMA Coliseum mine area Jarositef, muscovite XRDf: quartz (M), muscovite-2M1 (m), calcite (tr),
pyrite (tr), vermiculite-2M (tr), lizardite-1T (tr)
and/or clinochrysotile-2Mc1 (tr)
LS: jarosite, muscovite/illite
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Table 2. (continued)

Sample ID Sample Location Tetracorder Result Verification

Barstow, California
BR93-5A Galway Dry

Lake Area
Fe

2+ XRD: actinolite (M), tremolite (M), phlogopite (m),
chlorite-clinochlore (tr)
LS: Fe2+

BR93-5B Galway Dry
Lake Area

Fe2+, hematite XRD: phlogopite (M), magnetite (m),
magnesioferrite (m), albite (tr)
LS: hematite and mineral with broad Fe

2+ band.
BR93-20 Red Hill Area Fe

2+ XRD: phlogopite (M), albite (m), microcline (m),
chlorite-clinochlore (m), actinolite (tr?),
magnesiohornblende (tr?)
LS: very broad Fe2+ band.
Weak 2.3-mm features consistent
with amphiboles.

BR93-22B Bessemer Mine chlorite XRD: lizardite (M), orthochrysotile (tr),
antigorite (tr), chlorite-clinochlore (tr)
LS: chlorite

BR93-22C Bessemer Mine Fe2+ XRD: albite (M), actinolite (M), tremolite (M),
microcline (tr)
LS: Fe2+ (amphibole?), tremolite

BR93-25A Red Hill Hematite XRD: quartz (M), albite (m), microcline (m),
hematite (tr), muscovite (tr)
FV: desert varnish on quartzite
LS: hematite, kaolinite, muscovite (tr)

BR93-25B Red Hill Hematite XRD: quartz (M), albite (m), microcline (m),
muscovite (m), hematite (tr)
FV: desert varnish on quartzite
LS: hematite, kaolinite, muscovite (tr)

BR93-25C Red Hill Hematite XRD: hematite (m), quartz (m),
jarosite (m), albite (m),
muscovite (m), kaolinite (m), goethite (tr)
FV: desert varnish on quartzite
LS: hematite, kaolinite, muscovite (tr)

BR93-33 Rodman Mtns Epidote XRD: epidote (M), albite (M), quartz (M)
FV: epidote veins within biotite quartz monzonite
LS: epidote

BR93-34A Rodman Mtns Jarosite XRD: jarosite (good standard), goethite (tr)
FV: jarosite on quartzite, muscovite
LS: jarosite

BR93-34A2 Rodman Mtns Jarosite,
muscovite

XRD: quartz (M), jarosite (m), muscovite (tr)
FV: jarosite on quartzite, muscovite

LS: jarosite, muscovite

BR93-34B2 Rodman Mtns Hematite,

kaolinite + muscovite

XRDf: quartz (M), muscovite (m), orthoclase (m),
albite (m) FV: hematite on quartzite, muscovite

LS: nanocrytalline hematite, kaolinite + muscovite

BR93-34C Rodman Mtns Hematite XRD: quartz (M), hematite (m), pinnoite (tr)
FV: hematite on quartzite, muscovite
LS: hematite

BR93-34D2 Rodman Mtns Hematite

(nanohematite)
XRD: quartz (M), hematite (m), muscovite (tr)
FV: hematite on quartzite, muscovite
LS: hematite spectral structure consistent with
nanohematite with some fine-grained hematite

BR93-36A Rodman Mtns Fe
2+ XRD: quartz (m), albite (m), microcline (m),

biotite (tr), pyrite (tr)
LS: Fe2+

BR93-43 Newberry Mtns Fe2+, hematite XRD: Calcite (M), anorthite (m), augite (m)(source of Fe2+),
hematite (m), montmorillonite (tr)
FV: purple iron-oxide coated tuff
LS: Fe2+, hematite, 2.3-mm feature (tr)

BR03-46B Newberry Mtns Fe
2+ XRD: anorthite (M), tridymite (m), cristobalite (m),

augite (m) (Fe2+ source), quartz (m)
FV: desert varnish on basalt LS: Fe2+

BR93-60B Galway Dry
Lake Area

Fe2+ XRD: calcite (M), antigorite (m), clinochlore (m),
lizardite (m) orthochrysotile (m), dolomite (tr)
FV: desert varnish on limestone
LS: Fe2+

Joshua Tree National Park, California
JT96-120Aa Epidote Ridge Epidote XRD: epidote (M), quartz (tr), orthoclase (tr)

FV: green hand specimens characteristic of epidote
LS: epidote
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the analysis sequence. Other algorithms could have a
different sequence. The sequence is repeated for all entries
in all groups.
[77] 1. Apply initial algorithms, if necessary (e.g., data

conversions; ratio to a specific curve or spectrum).
[78] 2. Remove the continuum for each spectral feature in

the unknown using the same continuumwavelengths as those
defined in the reference library spectrum (equation (1b)).
[79] 3. Perform a feature-fitting shape analysis deriving a

‘‘fit’’ parameter for each spectral feature of each material
(equation (7)).
[80] 4. Apply constraints regarding the presence of diag-

nostic and optional features, continuum level, and slope
constraints (equation (10)) to each feature.
[81] 5. Derive the weighted fit (equation (8)) for each

material which passes the constraints of step 4.
[82] Third, apply constraints regarding the goodness of fit

values (threshold values).
[83] Fourth, find the highest fit for each material in each

group: this is the best answer in each group.

[84] Fifth, implement further analysis (e.g., determine
vegetation red edge or apply other algorithms not directly
involved in detection but contingent on a particular detec-
tion). These are cases. A case can call another case, so an
answer from the fourth step can lead to multiple additional
answers.
[85] Finally, write results of all analyses. We record three

results: the weighted fit, weighted depth and weighted fit �
depth for each library entry. For those materials not chosen
in the fourth and fifth steps, the results are set to zero. For a
Tetracorder imaging spectroscopy analysis using 300 refer-
ence materials, 900 output images are created. Note, that for
AVIRIS data with 224 spectral channels, the Tetracorder
output can be greater than the input (more output fit images
than input wavelengths).

4.1. Expert System Lessons Learned

[86] Reflectance and emittance spectra of mixtures typi-
cally found in nature are complex not only because of the
numerous mixture possibilities but also because of the

Sample ID Sample Location Tetracorder Result Verification

JT96-120Ab Epidote
Ridge Region

Calcite + Ca-montmorillonite,
goethite (Fe3+ thin film)

FV: calcite (acid fizz).
Calcite forms a caliche coating.
LS: calcite, montmorillonite,
trace Fe3+-absorption

JT96-120Ac Epidote
Ridge Region

Weak Fe2+,

calcite + montmorillonite

FV: calcite (acid fizz)
LS: weakFe2+ absorption,
calcite + montmorillonite/muscovite/illite

JT96-120B Epidote
Ridge Region

Dolomite, trace Fe
2+ XRD: dolomite (M), calcite (m),

quartz (tr), clinochlore (trace Fe
2+)

FV: characteristic dolomite appearance
and weathering pattern
LS: dolomite, trace Fe2+

JT96-112A E Joshua Tree Calcite + montmorillonite,
very broad Fe

2+
XRD: calcite (tr), clinochlore (tr),
phlogopite (m), microcline (tr), albite (tr),
quartz (M) FV: calcite (acid fizz)
Calcite in caliche soil
LS: calcite, 2.2-mm phyllosilicate (weak),
very broad Fe2+ from clinochlore+phlogopite

JT96-118 Epidote Ridge Fe2+, chlorite XRD: quartz (M), albite (M),
magnesiohornblende (m), goethite (tr)
LS: Fe2+ bearing minerals, 2.3-um
band is from an amphibole

JT96-116-209A E Joshua Tree Muscovite XRD: quartz (M), jarosite (tr), muscovite (m)
LS: muscovite

JT96-116-209B E Joshua Tree Muscovite XRD: quartz (M), clinochlore (tr), muscovite (tr), albite (tr)
LS: muscovite

aEntries in bold indicate agreement between Tetracorder and verification results. XRD = X-ray diffraction analysis; LS = laboratory spectroscopy; XRF =
X-ray fluorescence; SEM = scanning electron microscopy; EM = electron microscopy; FM = field mapping; FV = field verification (methods commonly
practiced by a field geologist); XNa = mole fraction Na (XRF assumes a single alunite phase); wxl = well crystallized; pxl = poorly crystallized. CUMC =
Cuprite Map Code from Swayze [1997]. Approximate XRD abundance indicators: (M) = major component 20wt% or more; (m) = minor 5–20 wt%; (tr) =
trace <5 wt%. N = north; E = east; W = west; S = south; Ectn = eastern center; Wctn = western center. Bulk = ground up sample; surface = optical surface.

Mercur Canyon field sample positions accurate to ±4m (positions based on NAD83 datum).
bClinochlore is a type of chlorite.
cSample may have been collected just south of the traverse where two component alunite dominates.
dHalloysite, in the kaolinite group, is spectrally similar to kaolinite mixtures with muscovite, illite, or montmorillonite and is sometimes confused,

especially at low abundances.
eXRD may not detect low abundances of muscovite.
fTrace hematite, goethite, jarosite, and other Fe3+-bearing minerals can be difficult for XRD to detect, even when red and yellow Fe3+ colors are present

in the sample.
gSpectroscopy cannot differentiate muscovite from illite at AVIRIS spectral resolution.
hNontronite is a type of smectite.
iXRD unable to identify specific mineralogy of smectite.
jThe XRD database does not have an example of a NH4-smectite.
kMontmorillonite is a type of smectite.
lXRD analysis may not detect poorly crystalline goethite [Swayze et al., 2000].
mJarosite may be converted to goethite on rock surfaces by exposure to precipitation [Swayze et al., 2000].
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multiple scattering typically encountered by photons inter-
acting with a particulate surface [Clark, 1999 and references
therein]. Thus spectroscopic analysis must handle such
conditions, including changes in grain size (Figure 5),
abundance in a mixture (Figure 4), overlapping absorption
bands from multiple materials in a mixture (Figure 4), level
shifts due to incident lighting, the finite spectral bandpass
of each spectral channel, and the spectral sampling. In
developing, testing, and verifying Tetracorder accuracy,
we learned many lessons. Here are some of the important
ones.
[87] Continuum-removed kaolinite and montmorillonite

spectra are shown in Figure 13a. How is it best to
distinguish between these two minerals as well as other
possible materials? The end points to the continuum-
removed spectra, by definition, average 1.0 after normal-
ization, and because all spectra are analyzed similarly, it
may seem that using the continuum end points would
not help in a least squares analysis. However, by
comparing identification success as a function of signal-
to-noise ratio we found that including continuum end
points significantly improves identification success [Swayze
et al., 2003].
[88] Using fit thresholding, Tetracorder finds nothing in

the spectrum as the spectral features become too weak to
identify, rather than identify the wrong material. The fit
threshold appears in the expert rules tables (electronic
supplement) as parameters with ‘‘FIT’’ in their labels.
[89] Some minerals have a main diagnostic absorption

plus a few subordinate absorptions, which if detected
further indicate the presence of that material. Can the
weaker features help in identification? Comparing identi-
fication accuracy with and without the weaker features, we
found that weak features do not help [Swayze et al.,
2003].

[90] Sometimes an absorption occurs at a similar wave-
length position as an absorption in some other material. Such
is the case with some Fe3+-bearing minerals (Figure 1a),
plants with chlorophyll absorption, and some photosynthetic
bacteria and algae. For example, goethite has a UV absorp-
tion near 0.5 mm, an absorption near 0.65 mm, and an
absorption near 1-mm (Figure 1a), but chlorophyll in plants
has an intense 0.6 to 0.7-mm absorption centered at nearly the
same location as the middle goethite feature. Trace vegeta-
tion contributing to a spectrum can appear to intensify the
0.65-mm Fe3+ absorption and can change its shape. Thus we
do not use the 0.65-mm feature when trying to identify Fe3+-
bearing minerals. Confusion with other spectral features that

Figure 13b. The Tetracorder feature fits for the mixture
series in Figure 13a are shown. If the end member kaolinite
feature is fit to each mixture spectrum, the correlation
coefficient (the fit) is shown as the red or dashed line. For
the montmorillonite feature fit to the mixture spectra, the fit
values are shown in green or dash-dot-dot. If only the end
member reference spectra are used by Tetracorder (top),
Tetracroder would derive a kaolinite or montmorillonite
answer where the curve is colored red or green, respectively.
The crossover point occurs at about 65% montmorillonite.
So any kaolinite-montmorillonite mixture with more than
35% kaolinite would be identified as kaolinite. However, if
Tetracorder included one 50%-50% kaolinite-montmorillo-
nite mixture reference spectrum (bottom), kaolinite abun-
dances from about 73% to 18% kaolinite (27% to 82%
montmorillonite) would be identified as a kaolinite-
montmorillonite mixture. More mixtures could be added
to the reference library, but the differences between
mixtures and therefore the fit differences needed to identify
different mixture abundances becomes correspondingly
less. Other factors, including grain-size effects, coatings,
and other components such as vegetation contributing to the
spectral signature confuse accurate mixture abundance
determinations. For example, 50% dry-vegetation cover
reduces the fit of the pure end members slightly (designated
by the points labeled ‘‘v’’ on the bottom plot).

Figure 13a. Montmorillonite-kaolinite areal mixture
series. End members montmorillonite (green) and kaolinite
(red) spectra and a 50-50% mixture in blue are shown (top).
A mixture series at 10% intervals for a continuum removed
spectral feature is shown (bottom).
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are not handled correctly in the expert system are described
in the deficiencies section 5.

4.2. Tetracorder Groups and Cases

[91] We have chosen to program the Tetracorder expert
system by separating analysis into groups and special cases.
This section gives an overview of the strategy.
4.2.1. Group 0: The Global View
[92] The group 0 entries in the electronic supplement

provide an overview of the spectrum and what spectral
features dominate. For example, if the spectral signature of
water dominates, it may be difficult to detect mineral
absorption features. If there are snow or vegetation features
that dominate the spectrum, then it will be difficult to detect
other mineral features. All group 0 entries are included in
each group (1, 2, 3, 4, etc.) analysis. Separating these entries
into a group reduces repetition in coding and in computation
time. In the Tetracorder analysis, these entries are computed
once and the results are added to the results for the other
groups before the identification decisions are made.
4.2.2. Group 1: 1-Mm Broad Region
[93] The group 1 entries in Table 1 in Appendix A in the

electronic supplement describe electronic and other absorp-
tion features seen in materials in the visible and near-infrared.
4.2.3. Group 2: 2-Mm Vibrational Absorption Region
[94] The group 2 entries in Table 2 in Appendix A in

the electronic supplement describe vibrational overtone
and combination bands in the 2 to 2.5-mm spectral region
with supporting information at shorter wavelengths when
appropriate.
4.2.4. Group 3: Vegetation Chlorophyll Detection
[95] The chlorophyll detection method presented in

Table 3 in Appendix A in the electronic supplement gives
a result proportional to green leaf area index. Note the
entries include several combinations, from a green lawn
grass spectrum (100% cover) to 20% grass cover on a
hematitic soil background (material 228 in Table 310 in
the electronic supplement). These entries provide detection
of trace vegetation in environments ranging from deserts to
full canopy forests.
4.2.5. Group 4: Rare Earth Materials
[96] The rare earth absorptions are quite narrow (see

spectra given by Clark et al. [1993a] and Clark [1999])
and thus have different requirements for detection (Table 4
in Appendix A in the electronic supplement). They can be
detected in the presence of other broad absorptions such as
those due to Fe2+ and Fe3+. However, vegetation spectra
seem to include a weak spectral structure that can be
confused with trace neodymium oxide, thus a ‘‘not feature’’
NOTGREENVEG variable is necessary. This implies that it
is difficult to detect neodymium oxide in the presence of
vegetation, so if significant vegetation is indicated in the
spectrum, there can be no detection of lower abundances of
neodymium.
4.2.6. Case 1: Vegetation Red Edge
[97] The position of the chlorophyll red edge absorption

feature can be found, as shown in Table 5 in Appendix A in
the electronic supplement, by ratioing to a fixed reference
spectrum [Clark et al., 1995a; Clark, 1999]. Detection of
shifts a fraction of the channel-to-channel spacing is possi-
ble with a ratio method. The reference spectra are unshifted
divided by shifted spectra and the spectral structure in the

ratio is used for the red-edge position detection. This special
case is only done if vegetation is detected by an analysis in
group 3.
[98] Similar methods could be employed to track shifts in

spectral features in other materials. For example, this
method could be used to track temperature when an ab-
sorption shifts wavelength position with temperature, like
the conduction band edge in sulfur.
4.2.7. Case 2: Vegetation Spectral Type
[99] Vegetation spectra change with species. Table 6 in

Appendix A in the electronic supplement spans a range of
shapes found in the chlorophyll absorption from desert
plants to lush lawns. The spectra are not unique identifiers
of these species, but indicate a spectral type. In different
environments, it is our experience that these spectral types
often delineate vegetation communities. This special case
is only done if vegetation is detected by an analysis in
group 3.
4.2.8. Case 3, 4, 5: Vegetation Leaf Water Content
[100] The absorption strength of each leaf water absorption

(Table 7 in Appendix A in the electronic supplement) is
determined by case 3: 0.95 mm, case 4: 1.15 mm, and case 5:
1.4 mm absorptions. The strength of these features correlates
with the amount of water in the plants and the fractional
cover by plants in the pixel. These special cases are only
done if vegetation is detected by an analysis in group 3.

5. Verification

[101] Through our experience in analyzing millions of
spectra from imaging spectroscopy data, field checking the
results [Clark et al., 1990b, 1991; Clark and Swayze, 1995;
Clark et al., 1992a, 1992b, 1993a, 1993b; King et al.,
1995a, 1995b, 2000; Swayze, 1997; Swayze et al., 1992,
1996, 2000 and references therein], analyzing over 40 mil-
lion synthetic spectra [Swayze and Clark, 1995; Swayze et
al., 2003], and selected tests with laboratory spectra, the
Tetracorder material identification system has worked well
for our team and our sponsors at several agencies. However,
strict statistical verification of Tetracorder results as applied
to remote sensing data is extremely difficult because ground
truthing of pixels 3 to 20 m in size in itself is extremely
challenging at best. In the absence of highly accurate
subpixel ground-truth, we assume a different stance regard-
ing verification.
[102] In principal we would like verification to be

expressed in terms of four metrics: true positives, true
negatives, false positives, and false negatives. The relative
values of these metrics gives us formal detection perfor-
mance. In practice, deriving these metrics has widely
varying difficulty. True positives are straightforward: deter-
mine the number of cases where Tetracorder predicted the
presence of a mineral and the mineral is present. True
negatives are much more difficult because it requires
establishing the predicted absence of a material to some
level of confidence. For some materials this is straightfor-
ward (water, vegetation), but for minerals, fully sampling a
20-m pixel is a challenge. False positives are similarly
difficult: can we be sure that our field verification method-
ology is as effective as Tetracorder? Finally, false negatives
are similarly difficult because we must find materials
incorrectly predicted to be absent.

5 - 30 CLARK ET AL.: IMAGING SPECTROSCOPY REMOTE SENSING



[103] To our knowledge, no remote sensing study has ever
statistically sampled a scene to determine if the mineralogy
mapped correctly, especially on the scale of imaging spec-
troscopy identifications such as presented here. We inves-
tigate Tetracorder results by several methods, checking for
true positives, true negatives, false positives, and false
negatives by characterizing multiple sites to the ability of
our time and resources. Within the context of this claim,
Tetracorder is extremely successful as shown below. We
verify this claim in two ways. There are two types of
verification of remote sensing imagery information: virtual
[King and Clark, 2000] and in situ. Virtual verification can
be done by examining the remote sensing data directly if
there is sufficient spatial and/or spectral information to
positively identify objects in the image by inspection. In
situ verification requires direct sampling of the environment
to verify the remotely sensed information.
[104] Note that there is a distinction between ‘‘identifica-

tion’’ and ‘‘classification’’ of results from the analysis of
remote sensing imagery. While some objects can be iden-
tified directly from the imagery, others can only be inferred
to some level of confidence (classification) that requires in
situ field checking. Information gained from the analysis of
remotely sensed data increases with better spatial resolution
and/or spectral resolution and, in general, is maximized
when both high spectral and high spatial resolution are used
together, although in some instances only high spatial or
spectral resolution is needed. For example, identifying cars
requires high spatial resolution but only low spectral reso-
lution. Black and white imagery would suffice to identify
cars; a simple color photo could be used to determine its
color.
[105] Using imaging spectroscopy data, with suitable

spectral resolution, it is possible to identify specific miner-
als in soils, such as kaolinite, based on the wavelength
position and shape of characteristic absorption features. The
detection of unique kaolinite spectral absorption features
allows the positive identification of the mineral and the
capability to map its distribution, based on the limits of the
spatial resolution of the instrument. In this case, there is no
need for in situ field checking because the spectra are of
sufficient resolution to be certain of their identification. The
derived kaolinite maps can be verified by examining spectra
from the imaging spectrometer data at a computer monitor
in a laboratory. This is virtual verification.
[106] From the above discussion it follows that certain

things can be verified directly from the imaging spectros-
copy data, both by spectral and spatial contexts. For
example, bodies of water, including lakes and streams, are
self evident in the images. Verification by spatial context
can be further proved by examining spectra. Thus Tetracor-
der maps of bodies of water are readily verifiable by
examining the resulting images and further verified by
comparing to published maps. Fields of vegetation are also
easily verified by spatial context and examination of the
unique spectral properties of vegetation (both green chloro-
phyll absorptions and drier vegetation showing lignin,
cellulose, and protein absorption features). Ice and snow,
at least in terrestrial environments, can also be verified by
spatial context using apparent albedo and with essentially
100% confidence by examining the spectra. By spatial
context and spectral features, we have verified that Tetra-

corder analysis for water, snow, and vegetation has a high
true positive and true negative rate and low false positive
and false negative rate. There are exceptions, and these are
noted in the deficiencies section below.
[107] Certain minerals have unique absorption features so

that they can be verified by extraction of spectra at a
computer without visiting the site. However, such virtual
verification can only have a high certainty if the spectral
feature is strong enough relative to the noise in the spectrum
and if there are no other minerals present with similar
features that can confuse the identification. Examples of
such cases we have encountered for minerals will be
discussed in the ‘‘deficiencies’’ section below. It is usually
evident from our experience that such mineral mixtures are
obvious by examination of the spectra, meaning that a
spectroscopist can tell the spectrum is ambiguous and that
the Tetracorder result is uncertain. Such areas are commonly
targeted for field investigation to determine what is really
there and how Tetracorder performed and what modifica-
tions, if any, are required to do a better job. It is these field
investigations at hundreds of locations in many different
geologic environments that have led to the current sophis-
tication of the expert system.
[108] Tetracorder results are based on the following

experiences. First, we have made numerous spectral
measurements in the laboratory of minerals and other
materials where sample purity, grain size, and measure-
ment viewing geometry were either closely controlled or
measured. Second, we have analyzed millions of real-
world spectra obtained with the NASA AVIRIS and
subsequently verified the resulting mineral maps in the
field (e.g., Swayze et al. [2000, 2003], Clark et al. [2001],
and references in these papers and in the applications
section below). We have discovered situations not envi-
sioned in the laboratory, made spectral measurements of
relevant samples encountered in the field, and devised
strategies to detect them. Third, we have encountered,
investigated, and simulated many noisy mineral spectra
and identified them under variable signal-to-noise ratio,
bandpass and sampling conditions [Swayze et al., 2003],
showing which ones were confused with each other and
which diagnostic spectral features could be used to better
discriminate among them. Fourth, we have measured
spectra of minerals, rocks, soils, and other materials in
the field where the spectroscopist could visually assess
conditions, again not necessarily envisioned in previous
laboratory studies, and rapidly obtain and evaluate the
spectra under those conditions. (We use two portable field
spectrometers which provide spectra in the 0.4–2.5-mm
wavelength region on time scales of a few seconds per
measurement.) Fifth, in field studies we collect hand
samples to verify the Tetracorder results. We have brought
these samples back to our laboratories and have done
additional analyses on them, including laboratory spectros-
copy (range 0.2 to 150 mm), X-Ray Diffraction (XRD),
electron microprobe, X-Ray Fluorescence (XRF), Mossba-
uer spectroscopy, petrographic and binocular microscope
examinations, and other analyses as appropriate. Example
results of field verification studies are shown in Table 2.
Sixth, we have analyzed spectra, collected by telescopes and
interplanetary spacecraft, of materials under nonlaboratory
conditions, some of which have yet to be duplicated and
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measured in the lab. From this we have gained a better
understanding of these materials from modeling done by us
and from published research.
[109] Table 2 presents a portion of our results of verifying

Tetracorder analyses at numerous sites studied in the
western United States. In verifying a Tetracorder result in
the field, the field team identifies an area in the image that
needs verification and goes to that location. This is not
always easy, as sometimes visual field geologic methods
cannot identify minerals (e.g., a few percent clay in a soil).
Portable field spectrometers are used to survey the area.
Such surveys are often sufficient to verify the presence of
materials in question. Hand samples are collected that
appear representative of the surface materials that contribute
to a pixel. Even with field spectroscopic verification,
traditional geologic field techniques, like hand lens exam-
ination and acid fizz tests are done. We also collect hand
samples and return them to the lab for more detailed
analyses.
[110] Table 2 shows verification analyses for over

100 examples of Tetracorder identifications from Cuprite,
Nevada; Leadville, Colorado; Arches National Park, Utah;
Canyonlands National Park, Utah; the Oquirrh Mountains
region, Utah; Summitville, Colorado; Mountain Pass,
California; Barstow, California; and Joshua Tree National
Park, California. In nearly every case the materials
predicted were identified in hand samples returned from
the field pixel location by at least one analysis method.
Tetracorder did not report the presence of all materials
detected by XRD, nor did XRD identify all the minerals
evident spectroscopically, but this reflects the differing
sensitivities of the two techniques. This exercise shows
that detections reported by Tetracorder are extremely
reliable indicators of the presence of the predicted min-
erals and that Tetracorder exhibits a high rate of true
positives.
[111] In examining the verification results in Table 2,

note that different methods are sensitive to different
abundances of materials. For example, the visible to
near-IR (Vis-NIR) spectrum (0.4 to 2.5 mm) is very
sensitive to Fe3+-bearing minerals and to clay minerals,
more so than XRD [e.g., see Farmer, 1974]. However,
the minerals quartz and low-iron feldspars have no
diagnostic absorptions in this spectral range, Vis-NIR
spectroscopy cannot detect them, but XRD is very sensi-
tive to them. For example, a red sandstone with an
obvious hematite and kaolinite spectrum may only show
quartz by XRD. Laboratory reflectance spectroscopy,
however, can be a definitive test of the presence of
hematite and kaolinite, if the absorptions appear strong.
We have found XRD to be of the greatest help in
verifying mixtures. Mixtures of minerals with overlapping
absorption bands can be difficult to interpret with
spectroscopy, unless suitable examples are known. XRD
has provided that critical link.

5.1. Known Deficiencies in the Presented Tetracorder
and Expert System

[112] The algorithms and set of expert system rules
presented here, while doing an excellent job of spectral
identification and mapping, are not perfect. The known
deficiencies are presented below so others who may use

our system will be able to appropriately interpret the results.
In all cases cited below, additional research is required to
address the deficiency.
[113] Deficiency 1 is calcite-epidote-chlorite mixtures.

These three minerals have similar absorptions near 2.3 mm
and in a mixture can be difficult to distinguish. The
chlorite absorption shifts with composition, which adds
to the complexity. The pure end members are well
mapped with the current expert rules, but as increasing
abundances of the other two are added, results can be
inaccurate. For example, initial mapping in the Animas
watershed region of Colorado showed abundant calcite
that could not be located in the field. Calcite is important
for buffering acidic rock drainage in the area. It was
found that much of what mapped as calcite was actually
chlorite-epidote-calcite mixtures, including minor amounts
of calcite.
[114] Deficiency 2 is shallow water/sediment suspended

in water. Certain shallow water depths have a spectral
signature that is a combination of water transmission and
bottom reflectance that results in unusual combined absorp-
tion features. These often map as unusual minerals that have
broad absorptions in the 0.6- to 1.3-mm region, for example
olivine. These errors are readily identifiable by spatial
image context. The solution is to include more water spectra
in the spectral library simulating such conditions and
placing continuum constraints on reference minerals to
restrict water-like continuum slopes.
[115] Deficiency 3 is halloysite versus kaolinite plus

montmorillonite/muscovite/illite. Kaolinite absorption plus
another clay absorption near 2.2 mm can produce a spectral
feature similar to that of halloysite. The long wavelength
side of the halloysite feature rises faster than the mixtures,
so additional mixture reference spectra will solve the
problem. The expert rules already contain such mixtures,
so some mixtures are correctly identified, but additional
reference spectra are needed to increase the accuracy of the
identifications.
[116] Deficiency 4 is talc-hectorite-saponite. These min-

erals have similar absorptions near 2.3 mm and are difficult
to distinguish at AVIRIS sampling (�0.01 mm) and band-
passes (�0.01 mm). The absorption features change shape
with different grain sizes. A grain size series is needed
for each library mineral. Higher spectral resolution than
that of AVIRIS would also help distinguish between these
minerals.
[117] Deficiency 5 is that wet vegetation and/or some

desert vegetation maps as melting snow plus vegetation.
As ice melts, the absorptions shift to shorter wavelengths.
The absorption due to water in plants can be broader
than in liquid or solid water, thus can be similar to a
combination of ice and vegetation. Succulent desert plants
(e.g., cactus family) often show broader absorptions than
grasses and trees. The current set of vegetation reference
spectra in the expert system is limited, so some vegeta-
tion is sometimes misidentified as snow plus vegetation
(this error is usually obvious when mapping desert
regions with data acquired in the heat of summer). The
solution is additional vegetation species added to the
expert system.
[118] Deficiency 6 is clouds. Most of our data sets have

been acquired under excellent clear sky conditions, so we

5 - 32 CLARK ET AL.: IMAGING SPECTROSCOPY REMOTE SENSING



have limited experience with the effects of clouds on
mapping results. A small cloud can reflect light from
adjacent surfaces and change the shape of broad spectral
features (like Fe2+ or Fe3+ absorptions) causing unusual
minerals to be mapped where the cloud or cloud shadow is
located. Cloud and cloud shadow detection algorithms must
be designed and implemented.
[119] Deficiency 7 is calibration. While not directly a

deficiency, we must note that calibration errors can translate
into spectral features or modification of spectral features.
This can cause Tetracorder to misidentify materials. Such
errors seem to occur mostly between mixtures where the
spectral characteristics are only slightly different. Thus
the accuracy of the resulting maps is directly proportional
to the accuracy of the calibration to reflectance. Wavelength
calibration is also important to the Tetracorder identification
accuracy: shifts in wavelength calibration can result in
errors in identification.
[120] Deficiency 8 is the question ‘‘How diagnostic is the

Fe2+ absorption?’’. The expert system includes many
minerals with Fe2+ absorptions. However, many such
absorptions are similar in position and shape, [e.g., see
Hunt, 1977; Clark, 1999 and references therein]. Minerals
like jadeite, cummingtonite, and others often map large
areas where those minerals do not exist. We typically label
our maps ‘‘Fe2+-bearing mineral’’ and not the specific
mineral identification. Fe2+-absorptions must be analyzed
in greater detail to see how diagnostic such absorptions are.
Studies to date that have indicated diagnostic abilities have
included only a limited number of samples. When all
minerals are considered, along with likely mixtures found
in terrestrial environments, it is not clear how diagnostic
the absorption is, except perhaps in a few cases, like that of
olivine.
[121] Deficiency 9 is that alunite paleothermometry may

give false high temperature results for some low temper-
ature supergene alunites. The direct measurement of for-
mation temperatures from the width of the 2.17-mm
absorption may be restricted to those areas dominated by
Al-deficient alunites. Apparently, the width of this absorp-
tion is sensitive to Al deficiencies in the octahedral layer,
and when there are none as in some supergene alunites,
the shape of the 2.17-mm band assumes that of the high
temperature configuration. More study is needed to con-
firm this restriction [Swayze, 1997].
[122] Deficiency 10 is that the reference entry for stauro-

lite maps vegetation plus water because overall its contin-
uum resembles vegetation plus water, and staurolite only
has one broad band and no smaller diagnostic spectral
features. Thus maps of staurolite are a spectral shape
indicator only, and usually only indicate a spectral vegeta-
tion type or certain vegetation density on a background soil.
The solution is to include NOT features that exclude snow
and vegetation features.
[123] Deficiency 11 is that pyrophyllite incorrectly

maps too much in areas of hydrothermal alteration. Low
levels of pyrophyllite map because of spectral structure
near 2.16 mm, the position of the strong pyrophyllite
absorption feature, due to incomplete removal of atmo-
spheric absorption features and/or spectral structure in
vegetation that may cover part of a pixel. Pyrophyllite is
a high temperature indicator mineral so its detection is

important for determining characteristics of hydrothermal
systems.

6. Applications

[124] Planetary surfaces are complex. The Earth’s surface
is probably the most complex in our solar system, showing
varied geology, oceans, ice caps, abundant life, and anthro-
pogenic influences. Other planets have different geology
and different surface compositions. In order to understand
our own planet as well as others, we produce maps of
materials and other measurable quantities. Maps of the
Earth’s surface can depict many themes, including geology,
ecosystems, environmental, hazards, land management, and
global change. Geologic mapping can include the depiction
of geologic formations (thus providing information on ages
and placements of units through geologic time), soils,
mineral occurrence, faults, mineralized zones, and aggregate
for building materials. Ecosystems maps might include
habitat, vegetation species/communities, vegetation health
and canopy chemistry, and riparian zone distributions.
Environmental applications can include acid rock drainage,
oil or toxic waste spills, forest fire potential (including fuel
load), water quality, and other distributions. Geologic haz-
ards maps can include volcanic eruption potential, swelling
clays, and landslide hazards. Land management maps can
include ecosystems impact by human activity, grazing
impacts by cattle, and others. Global change maps might
include surface albedo as a function of time, vegetation type
and global distribution, ice and snow distribution. The need
for accurate and more detailed maps has never been greater.
Here are a few examples of how imaging spectroscopy can
provide useful data in some of these areas.

6.1. Geologic Applications: Mapping Minerals and
Amorphous Materials

[125] Spectra of minerals as well as amorphous materials
show many diagnostic absorption features. Minerals are the
components of rocks, soils, and geologic formations, so
maps of mineralogy contain geologic information.
[126] Continuing with our Cuprite, Nevada example, we

mapped the area for minerals and amorphous and other iron
oxides. The Cuprite AVIRIS data were calibrated to apparent
surface reflectance to remove atmospheric absorptions and
scattering and to remove the solar response [Clark et al.,
1993b; Swayze, 1997]. Next, the reflectance data were
analyzed by the Tetracorder algorithm and over 254 spectral
categories were sought, producing 762 output images
(254 � 3: fit, depth, and fit � depth). About 70 categories
had significant fits as determined by spatial groupings of
pixels with fit values above the thresholds. Some of those
categories are vegetative; others are mineralogical and the
best 45 (approximately) of those are shown in Figure 9. Some
mixture series were combined into one color for display in
Figure 9. The material maps, shown in Figures 9a and 9b
show the diversity of minerals and depict their complex
distribution. Also significant but not shown were vegetation
occurrence, vegetation species (spectral type), and vegetation
leaf water abundance. Some minerals mapped in only a few
pixels and are not shown, but subsequent higher resolution
imaging has confirmed these small outcrops. All mineralogic
entries in the map keys have been confirmed by field work
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except pyrophyllite. Pyrophyllite plus alunite has been
searched for without success in the field. Subsequent work
indicates trace vegetation plus alunite sometimes mimics this
mixture spectrally confirming deficiency 11, above.
[127] The Cuprite area consists of dual relic hydrothermal

systems whose origins appear to be chronologically inde-
pendent [Swayze, 1997]. The western hydrothermal center is
zoned from muscovite (sericite) at the exterior, to kaolinite,
Na-alunite, through K-alunite (Figure 9, spectra in Figures 1
and 12). The eastern center is similarly zoned from kaolinite
to intermediate temperature K-alunite to high temperature
K-alunite, with a central cap of siliceous rocks. The western
center is eroded so that the highest portions of the hydro-
thermal system, where the siliceous cap would be, is no
longer present, and we are now seeing exposed a once
deeper level of the system. Some of the minerals exposed in
the eastern center formed higher up in the hydrothermal
system, further from the source of heat, and thus had lower
temperatures involved in their formation compared to the
minerals exposed in the western center [Swayze, 1997]. The
presence of certain minerals and their positions in their solid
solution series (e.g., high versus low aluminum muscovite,
Na- versus K-alunite, dickite, and others) in the different
centers places constraints on the formation conditions
[Swayze, 1997] that would be difficult to determine in the
field without considerable sampling and extensive labora-
tory analysis. The Cuprite mineral maps also provide new
insight into structures: there are boundaries in the mineral
maps that indicate faults not shown on existing geologic
maps [Swayze, 1997]. Even with detailed field sampling, it
is unlikely that maps of this detail showing the complex
relationships could be produced by any other method than
imaging spectroscopy.
[128] Additional geologic studies at Yellowstone National

Park using Tetracorder analysis [Livo et al., 1999, 2000]
relates altered mineral occurrences to geologic processes
and hydrothermal water chemistry. Kaolinite, alunite, and
hematite form from rising acidic waters where the water
flow is restricted in volume. These mineral deposits form
topographic highs resistant to erosion. Higher-volume neu-
tral pH waters form altered ground within basins that are
capped with siliceous sinter and montmorillonite and usu-
ally lack iron-oxides.
[129] Geologists usually map geologic formations.Mineral

occurrence maps, such as those for Cuprite, do not necessar-
ily depict geologic formations. However, geologic forma-
tions are composed of minerals, so mineral maps can usually
be used to map the extent of geologic formations. Mineral
maps can also be used to subdivide geologic member units, if
there is a compositional change between members. Mineral
maps provide a significant new tool for the field geologist,
enabling him or her to focus on the interesting areas, helping
to produce a better product, refine interpretations, and per-
mitting coverage of larger areas in less time.

6.2. Environmental Applications

[130] There are many environmental applications where
imaging spectroscopy can contribute by mapping chemistry.
We have studied acid rock drainage, which is a particularly
pervasive environmental problem in the western United
States. While metals and minerals are essential to an
industrialized society, mining activities can impact the

environment. Mines and entire mining districts have been
abandoned in the United States when mining operations
were no longer economic and, until recently, little consid-
eration has been given to environmental impacts. The
Leadville mining district in central Colorado shows exam-
ples of environmental damage from abandoned mines.
[131] The Leadville mining district, located at an eleva-

tion of 3000 m in the central Colorado Rockies, has been
mined for gold, silver, lead, and zinc for over 100 years.
This activity has resulted in waste rock and tailings, rich in
pyrite and other sulfides, sulfates, and secondary minerals
being dispersed over a 30 km2 area including the city of
Leadville. Oxidation of these sulfides releases lead, arsenic,
cadmium, silver, and zinc into snow melt and thunderstorm
runoff, which drains into the Arkansas River, a main source
of water for urban centers and agricultural communities.
The U.S. Environmental Protection Agency (EPA), U.S.
Bureau of Reclamation (USBR), contractors, and responsi-
ble parties have remediated the mined areas to curtail further
releases of heavy metals into various tributaries of the
Arkansas River.
[132] The size of the Leadville mining district and pres-

ence of spectrally detectable secondary minerals from the
pyrite oxidation-weathering process (Table 3) made imaging
spectroscopy analysis an effective tool for locating those
minerals related to the acid rock drainage sources. AVIRIS
data were collected over Leadville on 27 July 1995,
calibrated to apparent surface reflectance and mapped with
Tetracorder [Swayze et al., 1996, 2000]. The AVIRIS-
derived minerals map (Figure 14) was field checked
[Swayze et al., 1996, 2000] and confirmed by USBR studies
[Pearson, 1997]. The mineral map shows the sources of
alteration that contribute to acid rock drainage, thus focus-
ing cleanup efforts to those sites. Pyrite weathers to jarosite,
creating acidic waters which leach heavy metals from the
rocks and soils. Thus maps of pyrite and jarosite show the
source regions of acidic water. Other tailings piles showed
no acidic rock drainage-related minerals, showing investi-
gators the areas where no cleanup was necessary (or would
contribute little to improving the local environment). As a
result of this study, the USEPA estimated that the imaging
spectroscopy mineral mapping saved over $2 million in
remediation costs and accelerated cleanup efforts by
2.5 years [U.S. Environmental Protection Agency, 1998].
The extensive field verifications at Leadville and the cost
and time savings for the cleanup effort are testaments to the
accuracy of imaging spectroscopy and the Tetracorder
method.
[133] Rapid response materials maps of the World Trade

Center disaster [Clark et al., 2001] were produced by
calibrating AVIRIS data to apparent surface reflectance,
performing Tetracorder analysis, writing a report of the
results which was formally reviewed, and then distributing
the results to emergency response teams within 10 days of
AVIRIS data receipt. The Tetracordermaps showed no highly
concentrated widespread distribution of asbestiform minerals
or other toxic materials in the dust/debris from the collapse of
buildings, in agreement with ground sample analyses. The
Tetracordermaps also showed asymmetric debris distribution
indicating a nonsymmetric collapse of the buildings. Thermal
hot spots were also detected, and those maps were used by
fire fighters on scene to direct fire fighting efforts. Thus
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imaging spectroscopy and Tetracorder played a role in the
recovery effort. The mapping results were verified with
laboratory analysis of field samples. The rapid response
was possible because the Tetracorder algorithm produces
consistent and robust results in diverse environments.

6.3. Vegetation Species//Communities,
Health//Senescence Indicators, and Green
Leaf Water Abundance

[134] Spectra of vegetation come in two general forms:
green and wet (photosynthetic) and dry (nonphotosyn-

thetic), but there is a seemingly continuous range between
these two end members. The spectra of these two forms are
compared with a soil spectrum in Figure 15. Because all
plants are made of the same basic chemical components,
their spectra generally appear similar. However, the chloro-
phyll absorption at 0.69 mm shows subtle shape variations
that can be distinguished with shape matching algorithms
such as employed in Tetracorder. The near-infrared spectra
of green vegetation are dominated by liquid water vibra-
tional absorptions. The water bands in vegetation are shifted
slightly in wavelength compared with those in liquid water,

Figure 14. The Leadville Tetracorder mineral map overlaid on an orthophotographic base. The mineral
patterns pinpointed sources of acid mine drainage and resulted in a savings of over $2 million and
accelerated cleanup efforts by 2.5 years at this U. S. EPA Superfund site.

Figure 15. Spectra of green photosynthetic vegetation, dry, nonphotosynthetic vegetation, and a soil
containing montmorillonite.
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due to differences in hydrogen bonding. The reflectance
spectrum of dry, nonphotosynthetic vegetation (Figure 15)
shows absorptions due to cellulose, lignin, and protein.
Some of these absorptions can be confused with mineral
absorptions, unless a careful spectral analysis is done. For
example, the 2.3-mm feature in dry, nonphotosynthetic
vegetation spectra is similar to that of low abundances of
calcite.
[135] The Tetracorder system was tested for distinguish-

ing vegetation species using AVIRIS data over farm fields
in the San Luis Valley of Colorado. Reference spectra from
known species of crops were used to map similar spectral
shapes in the AVIRIS data using Tetracorder. Species
identification accuracy was greater than 97% based on farm
fields of known vegetation types (Figures 16a and 16b)
[Clark et al., 1995a, 1995b]. The imaging spectroscopy data
also resolves absorptions due to water in the plant leaves
(Figure 15), and those absorptions were mapped. The
vegetation chlorophyll absorption and the leaf-water absorp-
tions can be combined into a color composite image to
indicate relative water content in plants (Figure 17). The
results also show that dry nonphotosynthetic vegetation can
be mapped with imaging spectroscopy. Vegetation leaf-

water maps might indicate plant health and regions of
drought for monitoring forests, grasslands, and irrigation
of crops, or as indicators of forest fire danger potential, and
could be especially effective when data are acquired over a
growing season. Recent mapping of conifer forest species in
Yellowstone National Park [Kokaly et al., 1998, 2003] have
extended these results to the natural environment.

6.4. Water

[136] There are many potential water monitoring possi-
bilities [Carder and Steward, 1985; Carder et al., 1993]. We
show one example here involving pollution entering a lake.
Turquoise Lake, on land administrated by the U.S. Forest
Service near the town of Leadville, Colorado, shows
nothing out of the ordinary using visual wavelengths
(Figure 18a). Landsat TM bands and band ratios show
similar results, with no obvious or unique pollution source
except for several locations where sediment appears to
be entering the from the lake’s banks. Imaging spectros-
copy can resolve the reflectance maximum at 0.58 mm in
phytoplankton-rich water [Mustard et al., 1999] as shown
in Figure 18b, but traditional analysis methods provide
an ambiguous/cluttered signal. For example, Figure 18c

Figure 16a. Spectrally determined vegetation species map for San Luis Valley, Colorado.
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shows a band ratio selected to isolate the feature, but
other materials in the scene also show a response in the
ratio image, notably vegetation on land. The reflectance
maximum can be isolated using the three-point band
depth method (as outlined in Figure 8d). However, this
too shows response from other materials in the scene
(Figure 18d). The Tetracorder imaging spectroscopy
map (Figure 18b) correctly isolates the reflectance maxi-
mum from phytoplankton-rich water showing a plume
originating from a campground where sewer lines are less
than 50 m from the shore (Figure 18e). These lines are
probably leaking. However, the Forest Service took a sample
of the surface water and found no coliform bacteria. Visually,
from the lake shore edge, the plume cannot be seen with the
human eye. It is likely that contamination is entering the
lake through ground water inflow and subsurface testing is
warranted to rule out possible leaks. This result indicates

that imaging spectroscopy has the potential to be a sensitive
environmental monitoring tool for finding concealed point
sources of pollution.

6.5. Ice and Snow

[137] Ice is a special case in remote sensing of minerals on
the Earth because it is the one mineral that changes location

Figure 16b. Verification map for the vegetation species map for San Luis Valley, Colorado (Figure 16a)
derived from in situ field identification of crops. Compare the colored fields with the image in Figure 16a.
All fields except two were identified correctly, and for those two about half the fields were correctly
identified, leading to an average accuracy of 97%. Letter C shows location of AVIRIS calibration site.
Letter P shows fields found to be partially correct; all other colored fields were determined to be correctly
mapped.

Table 3. Pyrite and Secondary Mineralsa

Mineral Formula

Pyrite FeS2
Copiapite Fe2+Fe4

3+(SO4)6(OH)2	20H2O
Jarosite (Na,K)Fe3

+3(SO4)2(OH)6
Goethite alpha-FeO(OH)
Hematite alpha-Fe2O3

aAcid-generating potential is highest with pyrite, decreasing with each
lower entry.
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and grain size with weather, and it is probably the most
abundant surficial mineral in the solar system, covering
many outer solar system surfaces [Clark et al., 1986], as
well as portions of Mars and the Earth. The water absorp-
tion bands in the near infrared shift to shorter wavelengths
from gas to liquid and shift still further from liquid to solid
(Figure 19a). Imaging spectrometers can be used to detect
that shift and map different phases of water. Water absorp-
tions in vegetation occur at slightly different positions and
have different shapes and, combined with the chlorophyll
absorption at 0.69 mm, can be used to spectrally separate
liquid water, ice, and water in plants.
[138] We applied the differences in position and shapes of

water and ice absorption features to the task of mapping

melting snow in the San Juan Mountains of Colorado
(Figure 19b). The AVIRIS data were acquired in August
1992, after a brief summer snow storm. The snow was frozen
at the highest elevations, was partially melted at lower
elevations, and was turning to slush at even lower elevations.
At tree line, significant wet vegetation was encountered, and
finally at the lowest elevations dry, nonphotosynthetic veg-
etation and green but not wet vegetation are mapped at the
bottom of the valleys. These results were confirmed by field

Figure 17. San Luis Valley vegetation water abundance map. In this color composite, areas that are
white to bluish have plenty of water in the plant leaves; those areas that appear reddish have possible
water deficiencies. Yellow areas are dry, nonphotosynthetic vegetation. Such maps, if done for a region as
a function of time, may indicate areas suffering from drought and increased fire danger.

Figure 18a. Turquoise Lake, Lake County, Colorado.
Color TM image synthesized from AVIRIS. The image
shows several areas of turbidity in the lake but no obvious
pollution.

Figure 18b. Spectral map of phytoplankton-rich water
shows a plume originating from the shore. The plume
probably originates from a low-volume sewage leak near a
campground. The Tetracorder result shows detection of
phytoplankton-rich water only over the lake and no
response from nonwater targets. The Tetracorder spectral
matching-decision process enables robust identifications in
this situation, whereas simpler analyses show false
responses over land (compare Figures 18c and 18d).
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work showing relationships in the image were consistent and
virtual verification of snow spectra because of limited access
to the rough terrain and the time between image acquisition
and data analysis. A spectral bandpass of about 25 nm or
better, with 12 nm sampling or better, is required to make
the spectral distinctions between liquid water, snow, and
water in vegetation. The finer discrimination of mixtures of
these three possibilities requires the finer sampling and
bandpass of a system like AVIRIS (�10 nm sampling and
�10 nm bandpasses). Present broadband remote sensing
systems can not distinguish between these cases because
the absorption features can not be resolved.

6.6. Atmospheric Gases

[139] Planetary atmospheres also show absorption features
in spectra. Visual and near-infrared spectra of the Earth’s
atmosphere show absorptions due to water, oxygen, carbon
dioxide, ozone, and other components. The atmospheric

absorptions can be mapped much like surface materials
whether for the Earth [e.g., Green et al., 1996], the Jupiter
system [e.g., Carlson et al., 1996], or Mars [Christensen et
al., 1998]. Applications include mapping local sources of
pollution to global mapping of atmospheric gases.

Figure 18c. A ratio image using AVIRIS channels at 0.58
and 0.7 mm. The ratio does not uniquely isolate the
reflectance maximum due to phytoplankton-rich water.

Figure 18d. A three-point band depth image using
AVIRIS data at continuum wavelengths 0.5 and 0.7 mm
and the reflectance maximum at 0.58 mm. The three-point
band depth isolates the phytoplankton-rich water spectral
maximum better than a simple band ratio but also shows
response from other materials.

Figure 18e. Spectra from the AVIRIS data over Turquoise
Lake. The spectra show a reflectance maximum at 0.58 mm
in phytoplankton-rich water with the strongest signature
near the shore (a) but decreasing as the plume disperses
toward the outlet of the lake (e).

Figure 19a. A series of reflectance spectra of melting
snow. The top curve (a) is at 0�C and has only a small
amount of liquid water, whereas the lowest spectrum ( j) is
of a puddle of water about 3 cm deep on top of the snow.
Note the increasing absorption at about 0.75 mm and in the
short wavelength side of the 1-mm ice band, as more liquid
water forms. The liquid water becomes spectrally detectable
at about spectrum (e) (not labeled; two curves below c),
when the UV absorption increases. Spectra from Clark
[1999].
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[140] Carbon dioxide is a well-mixed gas on the Earth, and
its spectroscopic strength is proportional to its atmospheric
path length. The path length from the surface to space is
variable due to topographic differences, thus a map of CO2

feature strength (Figure 20a) shows an inverse correlation to
topography (higher elevations = lower CO2 feature strength).
Using control points to derive a correlation of 2-mm CO2

band depth versus elevation we see a linear trend in this data
set covering over 1700 m in elevation difference (Figure 21).
The least squares correlation coefficient shows an excellent
trend with an R2 value of over 0.98. The derived equation
was applied to the CO2 band depth image to derive a Digital
Elevation Model (DEM). The derived DEM (Figure 20b)
correlates well with the USGS DEM (Figure 20c). Some
artifacts are due to shadows and low albedo regions where
the signal-to-noise ratio in the AVIRIS data was insufficient
to compute an accurate CO2 depth.
[141] The DEM derived from CO2 absorptions was used

to geometrically correct the AVIRIS data. Tests show a
factor of 10 improvement in geometric rectification using
such a DEM with only four control points, compared to

third-order polynomial stretch with 20 control points with-
out using a DEM. The advantage of imaging spectroscopy
derived DEMs is that the resulting topography is inherently
registered with the spectroscopy data and at the same spatial
resolution. Accurate orthorectification allows for local light-
ing geometries to be accounted for and true reflectance to be
derived.

6.7. Other Planetary Applications

[142] The Galileo spacecraft which until recently orbited
Jupiter carried the Near Infrared Mapping Spectrometer
(NIMS). This instrument has provided data for making
maps of surface materials on the Galilean satellites and
atmospheric components in Jupiter’s atmosphere [Carlson
et al., 1996]. Data from NIMS has been used to discover
absorption bands in spectra of Ganymede and Callisto
[Carlson et al., 1996; McCord et al., 1998]. Tetracorder
has been used to map (Figure 22) the water ice and CO2

absorption features [Carlson et al., 1996]. The CO2 feature
at 4.25-mm is probably due to fluid or gas inclusions, but
the host mineral has yet to be identified. The mapping of

Figure 19b. Snow, melting snow, snow mixed with vegetation, and wet and dry vegetation are shown
for a region in the San Juan Mountains of Colorado in August of 1992. The spectral resolution of AVIRIS
enables analysis of detailed changes in the liquid-solid water absorption bands to map liquid water versus
ice, versus water in plants, and mixtures between them. Such detailed discrimination is not possible with
broad-band instruments.
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the 4.25-mm feature illustrates that a material may be
mapped even though we do not yet understand the origin
of the material. In this case a spectrum from Ganymede was
used for the library reference spectral feature. Note that the
4.25-mm absorption is not a CO2 ice feature, which occurs
at a slightly longer wavelength.
[143] The Mars Global Surveyor (MGS) is currently

orbiting Mars with the Thermal Emission Spectrometer
(TES), the first thermal infrared imaging spectrometer
covering the range 6 to 50 mm with 143 or 286 channels
[Christensen et al., 1992, 1998]. MGS is currently in the
mapping configuration and TES mapping most of Mars at
�3 km spatial resolution. Absorption bands in the thermal
infrared have been used to map minerals on the martian
surface similar to the mineral maps illustrated here, includ-
ing hematite and olivine [Christensen et al., 2000; Clark
and Hoefen, 2000; Hoefen and Clark, 2001; Hoefen et al.,
2000]. Tetracorder mid-Infrared expert system rules are
being developed for the TES investigation and will be
reported in a future paper.
[144] The Cassini mission is currently on its way to

Saturn with the Visual and Infrared Mapping Spectrometer
(VIMS) covering the 0.4 to 5.1 mm range with 352 spectral
channels. The VIMS has obtained data on Venus [Baines et
al., 2001] and recently flew by Jupiter where it obtained

imaging spectroscopy data on Jupiter, its satellites, rings,
and the Io Torus. VIMS will provide imaging spectroscopy
coverage in the Saturn system adequate to allow surficial
materials to be mapped on the satellites and rings of Saturn
and atmospheric components in Saturn’s atmosphere.

7. Discussion and Conclusions

[145] The Tetracorder materials identification system
takes a spectroscopic approach to interpretation of imaging
spectrometer data that was developed essentially to mimic
the process a spectroscopist uses for spectral analysis but
makes the process more quantitative and much more rapid.
The performance of our system has been highly satisfactory
to ourselves and our many sponsors, but there are clear
areas for improvement in addition to the detailed deficien-
cies noted. One critical area is quantifying the detection
limit for each material identified. To a degree this can be
simulated and examined in the laboratory by creating
mixtures or analyzing a large number of natural materials
and mixtures. This, however, is a general research topic for
the spectroscopic science community.
[146] For planetary science applications the system we

have developed should be extremely useful when data in the
visible and near-IR are returned from planned missions to
Mars. Mars is expected to display considerable mineralog-
ical diversity at high spatial resolution. The concepts we
have put forth are more challenging to implement in the
thermal IR because spectral signatures overlap more and
vary in shape more due to grain size variations, but we have
demonstrated that by employing a small number of key
spectra Tetracorder can mitigate this shortcoming. Fortu-
nately, linear mixing applies much more frequently at these
wavelengths.
[147] In producing materials maps, robustness is vital. If a

sensor is flown over the same site with minor changes to the
instrument spectral sampling, spectral bandpass, and spatial
resolution, the materials mapped should still be the same. If
the sensor is flown over a geologically different region, but
the same minerals exist as in other areas, those minerals
should be similarly detected and accurately mapped. Such is

Figure 20. The 2-mm CO2 absorption strength (a) can be
converted to topographic elevation (b). The derived
elevations matches the USGS Digital Elevation Model
(DEM) (c). The CO2 absorption strength image (Figure 20a)
is brighter for increasing strength. Because the atmospheric
path length is smaller with increasing elevation, the
absorption strength decreases, becoming darker in the
image. The DEMs (Figures 20b and 20c) are brighter for
increasing elevation, thus are inversely correlated with the
CO2 strength in (Figure 20a).

Figure 21. The 2-mm CO2 absorption strength versus
USGS DEM elevation shows a linear trend with an
excellent least squares correlation coefficient.
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not the case with some algorithms. Statistically based
algorithms (e.g., linear unmixing or those in some commer-
cial image processing packages) produce a different answer
based on the input data and on how much the derived
material map images are stretched [e.g., Goetz and Kindel,
1999; Boardman, 1999]. Tetracorder and our expert system
rules are more robust because results are independent of
spectral data in adjacent pixels.
[148] Consistency in mapped products is important,

whether the spectra are of vegetation, minerals, liquid or
solid water. The Turquoise Lake results are not a separate
analysis over water but a standard part of the Tetracorder
analysis using the same Tetracorder rules as those that
mapped acid drainage in the Leadville area (Turquoise Lake
and Leadville were covered by the same AVIRIS flight).
Tetracorder analyzes each spectrum for water, snow, vege-
tation, minerals, or man-made materials. Diagnostic features
and unique spectral characteristics, not statistical parame-
ters, determine what is found. Thus Tetracorder found water
and mapped the chlorophyll in the lake water only over
Turquoise Lake. There is no masking of the data for land
versus water; it uses a completely independent analysis to
decide what is present in each pixel. It is the same case for
the World Trade Center environmental assessment [Clark et
al., 2001]: Tetracorder mapped water versus land correctly
and at the same time as asbestos, organics, and other
materials. Tetracorder had no prior knowledge or limits as

to where the water boundaries were located. The fact that
Tetracorder produces robust materials maps that when field
checked are correct, from locating water to locating subtle
mineralogy in many different environments, attests to the
robustness of the spectral analysis approach.
[149] The success of the algorithm relies on a spectral

library for Tetracorder to make the correct decisions. We
have developed a robust set of expert system rules that as of
this writing, uses about 250 reference spectra to identify
mineralogy, vegetation, water, ice and snow, environmental
materials, and man-made materials. In the future we
expect to be testing for hundreds more if not thousands of
materials. A goal is to utilize Tetracorder and a refined
expert system for mapping of other planetary surfaces
equally well. The expert system has been designed with
that use in mind, and it is possible to apply Tetracorder to
identify spectra from anywhere in the solar system, whether
laboratory data, field spectrometer data, aircraft imaging
spectroscopy data, spacecraft imaging spectroscopy data, or
telescopic spectra of other planets. It can also work with
reflectance or emittance data in any wavelength region.
[150] Future enhancements to Tetracorder will include

fuzzy logic to replace hard threshold levels and the addition
of more algorithms, including unmixing codes that use
answers from the first round identification analyses, tem-
perature, and pressure constraints for application to other
planets. Similar rules are being derived for the thermal

Figure 22. Galileo NIMS spectra of Ganymede were analyzed to show the locations of ice and CO2 (the
4.25-micron image) that appears to be in fluid or gas inclusions in a yet unidentified mineral [Carlson et
al., 1996; McCord et al., 1998]. The CO2 has its greatest concentration on the equator, decreasing toward
the poles. Tetracorder mapping used reference spectra from NIMS data of Jupiter’s moon Ganymede,
thus the material does not have to be a laboratory reference spectrum for use in Tetracorder.
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infrared spectral region to analyze Mars Global Surveyor
Thermal Emission Spectrometer data, and a new midin-
frared spectral library is in preparation. Galileo NIMS and
Cassini VIMS include wavelengths to 5 mm, thus rules for
that region are also being developed.

7.1. Availability

[151] Because of the complexity involved in spectroscop-
ic analysis and the necessary sophistication of Tetracorder,
expert knowledge of spectroscopy is important to success-
fully use this algorithm, especially when evaluating the
results and when exploring for new materials not already
in the expert system rules. The complete system, including
source code, command files, and spectral libraries will be
available on our web site at http://speclab.cr.usgs.gov.
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