
(A) Perspective view of the southern most portion of the Hebrus Valles outflow channel, where channel floor disappearance into a network of pits and troughs is observed.
(B) Close-up view on panel A. (1) Pendant bar located along a zone of knickpoint retreat, indicating transition of flow from the surface to subsurface.
An international research team led by the Planetary Science Institute has found evidence that indicates that approximately 2 billion years ago enormous volumes of catastrophic floods discharges may have been captured by extensive systems of caverns on Mars, said PSI Research Scientist, J. Alexis Palmero Rodriguez.
Rodriguez and the research team came to this conclusion after studying the terminal regions of the Hebrus Valles, an outflow channel that extends approximately 250 kilometers downstream from two zones of surface collapse.
The Martian outflow channels comprise some of the largest known channels in the solar system. Although it has been proposed their discharge history may have once led to the formation of oceans, the ultimate fate and nature of the fluid discharges has remained a mystery for more than 40 years, and their excavation has been attributed to surface erosion by glaciers, debris flows, catastrophic floodwaters, and perhaps even lava flows, Rodriguez said.
The PSI-led team’s work documents the geomorphology of Hebrus Valles, a Martian terrain that is unique in that it preserves pristine landforms located at the terminal reaches of a Martian outflow channel. These generally appear highly resurfaced, or buried, at other locations in the planet. Rodriguez and his co-authors, who include PSI Senior Scientist Mary Bourke and Research Scientist Daniel C. Berman, propose in an article titled “Infiltration of Martian overflow channel floodwaters into lowland cavernous systems” published in Geophysical Research Letters that large volumes of catastrophic floodwaters, which participated in the excavation of Hebrus Valles, may have encountered their ultimate fate in vast cavernous systems.
An international research team led by the Planetary Science Institute has found evidence that indicates that approximately 2 billion years ago enormous volumes of catastrophic floods discharges may have been captured by extensive systems of caverns on Mars, said PSI Research Scientist, J. Alexis Palmero Rodriguez.
Rodriguez and the research team came to this conclusion after studying the terminal regions of the Hebrus Valles, an outflow channel that extends approximately 250 kilometers downstream from two zones of surface collapse.
The Martian outflow channels comprise some of the largest known channels in the solar system. Although it has been proposed their discharge history may have once led to the formation of oceans, the ultimate fate and nature of the fluid discharges has remained a mystery for more than 40 years, and their excavation has been attributed to surface erosion by glaciers, debris flows, catastrophic floodwaters, and perhaps even lava flows, Rodriguez said.
The PSI-led team’s work documents the geomorphology of Hebrus Valles, a Martian terrain that is unique in that it preserves pristine landforms located at the terminal reaches of a Martian outflow channel. These generally appear highly resurfaced, or buried, at other locations in the planet. Rodriguez and his co-authors, who include PSI Senior Scientist Mary Bourke and Research Scientist Daniel C. Berman, propose in an article titled “Infiltration of Martian overflow channel floodwaters into lowland cavernous systems” published in Geophysical Research Letters that large volumes of catastrophic floodwaters, which participated in the excavation of Hebrus Valles, may have encountered their ultimate fate in vast cavernous systems.