Evolving Material, Not Rings, Circling Centaur Chiron

November 29, 2023

By

Alan Fischer

November 29, 2023, Tucson, Ariz. – Observations during a stellar occultation detected the presence of evolving material orbiting around Centaur (2060) Chiron, rather than a two- ring system interpretation, according to a paper by Planetary Science Institute Senior Scientist Amanda Sickafoose.

“We observed a star passing behind the Centaur Chiron from the 1.9-m telescope in Sutherland.  We detected dips in the starlight as it was blocked by Chiron’s nucleus as well as by material located between 300 to 400 kilometers on either side,” said Sickafoose, lead author of the paper “Material Around the Centaur (2060) Chiron from the 2018 November 28 UT Stellar Occultation” that appears in The Planetary Science Journal.

“These data were used to rule out any substantial global atmosphere around Chiron. The locations and amounts of material that were detected around Chiron are different enough from previous observations to suggest that there is not a stable ring system but rather surrounding material that is currently evolving,” Sickafoose said.

An occultation is an event that occurs when one object is hidden from the observer by another object that passes between them. Stellar occultations have proven to be an effective method by which to measure the sizes and shapes of small bodies in the outer Solar System, as well as to discover and characterize planetary atmospheres and rings.

Centaurs are small Solar System bodies on chaotic orbits around the Sun between Jupiter and Neptune that cross the orbit of one or more of the planets. They are thought to have originated in the outer Solar System, and some Centaurs show cometary-like outgassing.  The first small-body ring system detected in the Solar System was around the largest Centaur, (10199) Chariklo, in 2013. Chiron is the next largest of these objects, at approximately 200 km in diameter.

“There is material orbiting around Chiron that is evolving on relatively short timescales. Past stellar occultation observations have detected material around Chiron’s nucleus, and it was thought to be due to jets or a shell of surrounding debris. Data from a 2011 occultation were interpreted to be a two-ring system like that discovered at Chariklo. The observation reported here, from 2018, is not consistent with the two-ring interpretation,” she said.

Little is known about how and where rings can form around small bodies.  Orbiting material should also disperse relatively quickly if there is not a confinement or replenishment mechanism. If Chiron had a stable ring system, it would be one of only a few such objects. Instead, Chiron appears to be the only object observed to date that has enough surrounding material to observationally mimic rings, but instead the locations and amounts of material are varying over just a few years. Continued observations of Chiron, as well as the other minor planets that are thought to have rings, will provide insight into what makes these objects unique from their counterparts that lack surrounding material.

Sickafoose collected and analyzed the data and wrote the paper. She observed remotely from the South African Astronomical Observatory in Cape Town using the 1.9-meter telescope located at the SAAO site in Sutherland, South Africa.

Her work was partly funded by National Science Foundation (NSF) Astronomy and Astrophysics Research Grant award number 2206306 and an award from the NASA Solar System Observing Program to the Planetary Science Institute (80NSSC21K0432).

””An”

An exterior view of the 1.9-meter telescope facility in Sutherland, South Africa. The mirror blank for this telescope was made by Corning in the US and sent to Grubb Parsons in the UK in 1938, where it spent years buried in the ground to avoid destruction during the war. From 1948 the telescope was located at the Radcliffe Observatory at Pretoria, and it was moved to the Sutherland site nearly 50 years ago. Credit: saao.ac.za.

###

Planetary Science Institute

The Planetary Science Institute is a private, nonprofit 501(c)(3) corporation dedicated to Solar System exploration. It is headquartered in Tucson, Arizona, where it was founded in 1972. PSI scientists are involved in numerous NASA and international missions, the study of Mars and other planets, the Moon, asteroids, comets, interplanetary dust, impact physics, the origin of the Solar System, extra-solar planet formation, dynamics, the rise of life, and other areas of research. They conduct fieldwork on all continents around the world. They are also actively involved in science education and public outreach through school programs, children’s books, popular science books and art. PSI scientists are based in over 30 states, the District of Columbia and several international locations.

MEDIA CONTACT

Mikayla Mace Kelley

Public Information Officer

[email protected]

PSI INFORMATION

Amanda Hendrix

Director

[email protected]